Nav: Home

Novel regulatory mechanism controls how plants defend themselves against pathogens

January 19, 2017

Together with collaborators in Austria, scientists at The Sainsbury Laboratory (TSL) in Norwich (UK) are unravelling the complex mechanisms underlying plants' innate abilities to resist pests and pathogens. In a new paper published in Science, the team reveals how a class of endogenous plant peptides and their corresponding receptor regulate plant immune responses.

Plants possess an incredible capacity to fight off pests and pathogens. Research in Professor Cyril Zipfel's laboratory at TSL seeks to understand the molecular mechanisms underlying innate plant immunity so that we might learn how to exploit and improve plant immunity in our cropping systems.

One way in which plants can defend themselves against disease is by using receptor proteins at the cell surface that detect specific conserved patterns from microbial invaders. FLS2 and EFR are two such well-studied receptors that recognise important bacterial proteins to induce immunity; a step that requires the recruitment of co-receptor proteins.

Together with Dr. Youssef Belkhadir's group at the Gregor Mendel Institute (GMI) in Vienna (Austria), Professor Zipfel and his team describe a novel mechanism that regulates the formation of these active immune receptor complexes, and thus controls the appropriate initiation of plant immune responses.

Dr Martin Stegmann, first author of the study, said: "We identified that a receptor called FERONIA regulates the formation of a protein complex between FLS2, EFR and their co-receptor BAK1. This FERONIA-mediated regulation depends on the perception of distinct endogenous plant peptides that can either positively or negatively influence plant immunity."

Importantly, as Professor Zipfel said: "As well as our new results linking FERONIA to the initiation of plant immune responses, this receptor was previously shown to regulate a multitude of plant growth and developmental processes. Thus, our study provides new, testable models to understand how this conserved receptor regulates many key aspects of the plant's life. In addition, other studies indicate that plant pathogens may hijack this mechanism to cause disease. Our findings could be used to increase crop yield and resistance to pathogens."
-end-
This research was funded by the Gatsby Charitable Foundation, the European Research Council, the Austrian Academy of Science through the Gregor Mendel Institute, the Deutsche Forschungsgemeinschaft (fellowship), the European Molecular Biology Organization, the United Kingdom Biotechnology and Biological Sciences Research Council (fellowships) and the Erasmus Mundus program.

Notes to editors

1. The paper 'The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling' will be published in Science on Friday 20 January 2017.

2. Images to accompany the press release can be downloaded from: http://bit.ly/2iHEYqI

3. If you have any questions or would like to interview Professor Zipfel, please contact:
Geraldine Platten
Acting Head of External Relations, The Sainsbury Laboratory
E: geraldine.platten@jic.ac.uk

4. About The Sainsbury Laboratory, Norwich

The Sainsbury Laboratory (TSL) is a world-leading research centre focusing on making fundamental discoveries about plants and how they interact with microbes. TSL not only provides fundamental biological insights into plant-pathogen interactions, but is also delivering novel, genomics-based, solutions which will significantly reduce losses from major diseases of food crops, especially in developing countries. TSL is an independent charitable company and receives strategic funding from the Gatsby Charitable Foundation with the balance coming from competitive grants and contracts from a range of public and private bodies, including the European Union (EU), Biotechnology and Biological Sciences Research Council (BBSRC) and commercial and charitable organisations http://www.tsl.ac.uk.

5. About the GMI

The Gregor Mendel Institute of Molecular Plant Biology (GMI) was founded by the Austrian Academy of Sciences (ÖAW) in 2000 to promote research excellence in molecular plant biology. The GMI is one of the most important centers worldwide for basic plant research. With over 100 employees from 25 countries, the GMI conducts research in basic plant biology, particularly in its molecular genetic aspects: from mechanisms of epigenetics, to chromosome biology, developmental biology, stress resistance, plant pathogens and population genetics. The GMI is located in a state-of-the-art laboratory building of the ÖAW in the Vienna Biocenter, a complex including many other leading research institutes and biotech companies.

Contact
J. Matthew Watson
Head of Science Support
Dr. Bohr-Gasse 3
1030 Wien
+43 1 79044 9101
james.watson@gmi.oeaw.ac.at

John Innes Centre

Related Pathogens Articles:

New approach to antibiotic therapy is a dead end for pathogens
In the case of the pathogen Pseudomonas aeruginosa, the evolution of resistance to certain antibiotics leads to an increased susceptibility to other drugs.
Chaining up diarrhea pathogens
Researchers have clarified how vaccinations can combat bacterial intestinal diseases: vaccine-induced antibodies in the intestine chain up pathogens as they grow in the intestine, which prevents disease and surprisingly also hinders the spread of antibiotic resistance.
New insights on how pathogens escape the immune system
The bacterium Salmonella enterica causes gastroenteritis in humans and is one of the leading causes of food-borne infectious diseases.
Novel regulatory mechanism controls how plants defend themselves against pathogens
Together with collaborators in Austria, scientists at the Sainsbury Laboratory in Norwich are unraveling the complex mechanisms underlying plants' innate abilities to resist pests and pathogens.
A new approach against Salmonella and other pathogens
Researchers from MIT and UC Irvine have developed a way to immunize against microbes that invade the gastrointestinal tract, including Salmonella, the leading cause of foodborne illness in the US.
Hospital rooms and patients equally likely to transmit pathogens
'This study is a good wake-up call that health care personnel need to concentrate on the idea that the health care environment can be contaminated,' said Deverick Anderson, M.D., the study's lead author and associate professor of medicine at Duke University School of Medicine.
How are dreaded multidrug-resistant pathogens brought into hospitals?
In largest study of its kind in Europe, DZIF scientists from the University of Cologne investigated this question and discovered that almost ten percent of patients admitted into hospitals already bring these dreaded pathogens along with them from home.
New chili pathogens discovered in Australia
Scientists have identified four new pathogens previously not found in Australian chilies, raising the stakes for the country's quarantine and disease resistance efforts.
Study shows how genes affect immunity in response to pathogens
A study that is first in its kind and published in Nature Medicine today has looked at how far genetic factors control the immune cell response to pathogens in healthy individuals.
New software improves ability to catalog bacterial pathogens
Washington State University researchers have developed a new software tool that will improve scientists' ability to identify and understand bacterial strains and accelerate vaccine development.

Related Pathogens Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...