Atherosclerosis: Endogenous peptide lowers cholesterol

January 19, 2017

Cells of the innate immune system that play an important role in development of atherosclerosis contain a protein that reduces levels of cholesterol in mice - and thus helps to inhibit or mitigate the disease.

Atherosclerosis remains one of the primary causes of premature death in modern Western societies. The term itself refers to insoluble, fat-rich deposits that form on the inner wall of major blood vessels resulting in a chronic, localized inflammation. These so-called plaques obstruct blood flow and can ultimately lead to heart attacks and strokes. The unresolved inflammatory reactions that lead to atherosclerosis are initiated by immune cells in response to perturbations in lipidmetabolism owing to the presence of excess cholesterol (hypercholesterolemia) in the circulation. Researchers led by LMU's Oliver Söhnlein have now shown in mice that one of the cell types involved produces a protein that inhibits atherosclerosis by intervening in cholesterol metabolism. The new finding, reported in the journal EBioMedicine, could open up new options for the treatment of atherosclerosis.

Initiation and progression of atherosclerosis are closely linked to the activation of specific classes of cells that are part of the immune system. In earlier experiments, Söhnlein and his colleagues had shown that white blood cells called neutrophils play an important role in the process. The most abundant protein found in human neutrophils is human neutrophil peptide 1 (HNP1), which is known to have anti-microbial and pro-inflammatory functions. In contrast, mouse neutrophils normally do not express this protein at all. "This observation provided us with a unique opportunity to study the function of this protein. To do so, we genetically constructed a mouse strain that is not only prone to atherosclerosis, but also produces high levels of HNP1," Söhnlein explains. Much to their surprise, the LMU team found that the atherosclerotic lesions that formed in these mice were much smaller than those seen in the mice that lacked HNP1. "We expected to see exactly the opposite effect - in particular because we had previously discovered that HNP1 stimulates the recruitment of atherosclerosis-promoting monocytes to sites of inflammation," Söhnlein adds.

When they examined the HNP1-expressing mice more closely, the researchers discovered that the animals had lower levels of circulating cholesterol than control mice. Because cholesterol is not soluble in water, it is transported in the bloodstream in association with so-called lipoproteins. Lipoproteins are often divided into good guys and bad guys. The good guys, including HDL, transport cholesterol from the tissues to the liver and thus reduce the risk of atherosclerosis. The bad guys, like LDL, convey cholesterol in the opposite direction - from the liver to the tissues. High levels of circulating LDL thus enable more cholesterol to be delivered to endothelial cells that are especially prone to damage or are already damaged, and therefore tend to promote atherosclerosis. "Indeed, we were able to show that HNP1 binds to LDL in the bloodstream and induces rapid uptake of circulating LDL by the liver, thus reducing hypercholesterolemia," says Söhnlein. This can account for the reduction atherosclerotic lesions in HNP1-expressing mice.

The researchers believe that their findings may lead to new approaches to the treatment of hyperlipidemia. "Since HNP1 is a natural constituent of the human body, therapeutic use of the protein would be expected to be relatively free of side-effects and should not compromise immune defenses," Söhnlein points out.
-end-


Ludwig-Maximilians-Universität München

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.