Nav: Home

New research collaboration with UTSA professor challenges existing models of black holes

January 19, 2018

Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), has collaborated on a new study that expands the scientific community's understanding of black holes in our galaxy and the magnetic fields that surround them.

"Dr. Packham's collaborative work on this study is a great example of the innovative research happening now in physics at UTSA. I'm excited to see what new research will result from these findings," said George Perry, dean of the UTSA College of Sciences and Semmes Foundation Distinguished University Chair in Neurobiology.

Packham and astronomers lead from the University of Florida observed the magnetic field of a black hole within our own galaxy from multiple wavelengths for the first time. The results, which were a collective effort among several researchers, are deeply enlightening about some of the most mysterious objects in space.

A black hole is a place in space where gravity pulls so strongly that even light cannot escape its grasp. Black holes usually form when a massive star explodes and the remnant core collapses under the force of intense gravity. As an example, if a star around 3 times more massive than our own Sun became a black hole, it would be roughly the size of San Antonio. The black hole Packham and his collaborators featured in their study, which was recently published in Science, contains about 10 times the mass of our own sun and is known as V404 Cygni.

"The Earth, like many planets and stars, has a magnetic field that sprouts out of the North Pole, circles the planet and goes back into the South Pole. It exists because the Earth has a hot, liquid iron rich core," said Packham. "That flow creates electric currents that create a magnetic field. A black hole has a magnetic field as it was created from the remnant of a star after the explosion."

As matter is broken down around a black hole, jets of electrons are launched by the magnetic field from either pole of the black hole at almost the speed of light. Astronomers have long been flummoxed by these jets.

These new and unique observations of the jets and estimates of magnetic field of V404 Cygni involved studying the body at several different wavelengths. These tests allowed the group to gain a much clearer understanding of the strength of its magnetic field. They discovered that magnetic fields are much weaker than previously understood, a puzzling finding that calls into question previous models of black hole components. The research shows a deep need for continued studies on some of the most mysterious entities in space.

"We need to understand black holes in general," Packham said. "If we go back to the very earliest point in our universe, just after the big bang, there seems to have always been a strong correlation between black holes and galaxies. It seems that the birth and evolution of black holes and galaxies, our cosmic island, are intimately linked. Our results are surprising and one that we're still trying to puzzle out."
-end-


University of Texas at San Antonio

Related Black Hole Articles:

Scientists make waves with black hole research
Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe.
Collapsing star gives birth to a black hole
Astronomers have watched as a massive, dying star was likely reborn as a black hole.
When helium behaves like a black hole
A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space -- is also true for cold helium atoms that can be studied in laboratories.
Star in closest orbit ever seen around black hole
Astronomers have found evidence of a star that whips around a likely black hole twice an hour.
Tail of stray black hole hiding in the Milky Way
By analyzing the gas motion of an extraordinarily fast-moving cosmic cloud in a corner of the Milky Way, Astronomers found hints of a wandering black hole hidden in the cloud.
Hubble gazes into a black hole of puzzling lightness
The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle.
Clandestine black hole may represent new population
Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
Behemoth black hole found in an unlikely place
Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe.
Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Related Black Hole Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".