NMRCloudQ: A quantum cloud experience on a nuclear magnetic resonance quantum computer

January 19, 2018

Quantum computers are coming and attract attentions from scientists all over the world. However, as of today, no one can tell when a universal quantum computer with thousands of logical quantum bits will be built. At present, most quantum computer prototypes involve less than ten individually controllable qubits, and only exist in laboratories for the sake of either the great costs of devices or professional maintenance requirements. Moreover, scientists believe that quantum computers will never replace our daily, every-minute use of classical computers, but would rather serve as a substantial addition to the classical ones when tackling some particular problems, Due to the above two reasons, cloud-based quantum computing is anticipated to be the most useful and reachable form for public users to experience with the power of quantum.

As initial attempts, IBM Q has launched influential cloud services on a superconducting quantum processor in 2016, but no other cloud services have followed up yet in china. Recently, three research teams from Prof. G. L. Long at Tsinghua University, Ali-USTC joint program and Quantum BenYuan at USTC launched their cloud services on the same day. Different from the existing cloud services, a joint team led by G. Long at Tsinghua University, B. Zeng at University of Guelph and D. Lu at SUSTech presents a new cloud quantum computing NMRCloudQ which is based on well-established nuclear magnetic resonance. NMRCloudQ sevice provides a comprehensive software environment and aims to be freely accessible to either amateurs that look forward to keeping pace with this quantum era or professionals that are interested in carrying out real quantum computing experiments in person. In the current version, 4 -qubit NMRCloudQ provides users with 20 single-qubit gates and 9 two-qubit gates for building quantum circuit on line and density matrix of the final state after finishing experiments. Randomized Benchmarking tests show that average 99.10% single-qubit gate fidelity and 97.15% two-qubit fidelity are achieved. Improved control precisions after updating a new sample with longer coherence time and stronger coupling between different nuclei will be available later. Benefitting from the mature techniques in experimental quantum computing, NMRCloudQ may open the control layer to users in the future.
-end-
See the article: Tao Xin, Shilin Huang, Sirui Lu, Keren Li, Zhihuang Luo, Zhangqi Yin, Jun Li, Dawei Lu, Guilu Long, and Bei Zeng. NMRCloudQ: A quantum cloud experience on a nuclear magnetic resonance quantum computer. Science Bulletin, 2018, 63(1)17-23
Doi: 10.1016/j.scib.2017.12.022
https://www.sciencedirect.com/science/article/pii/S2095927317306412

Science China Press

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.