Nav: Home

A nanophenomenon that triggers the bone-repair process

January 19, 2018

Researchers at the Institut Català de Nanociència i Nanotecnologia (ICN2), a Severo Ochoa research centre located in the Universitat Autònoma de Barcelona (UAB) Campus and member of the Barcelona Institute of Science and Technology (BIST), have discovered that bone too is flexoelectric. They posit the possible role of flexoelectricity in the regeneration of bone tissue in and around the kind of microfractures incurred in bones on a daily basis. The ICN2 Oxide Nanophysics Group led by ICREA Prof. Gustau Catalan reports these findings today in Advanced Materials, with lead author Fabián Vásquez-Sancho. The work has potential implications for the prosthetics industry and the development of biomimetic self-healing materials.

Bones were already known to generate electricity under pressure, stimulating self-repair and remodelling. First reported in the late fifties, this was initially attributed to the piezoelectricity of bone's organic component, collagen. However, studies have since observed markers of bone repair in the absence of collagen, suggesting that other effects are at play. In this work ICN2 researchers have revealed just such an effect: the flexoelectricity of bone's mineral component.

Flexoelectricity is a property of some materials that causes them to emit a small voltage upon application of a non-uniform pressure. This response is extremely localised, becoming weaker as you move away from the point of maximum stress. In microfractures it is localised to the leading edge or tip of the crack, an atomically small site that, by definition, concentrates the maximum strain a material is able to withstand before full rupture. The result is a flexoelectric field of such magnitude that, in the immediate vicinity of the crack, it eclipses any background collagen piezoelectric effect.

By studying strain gradients in bones and pure bone mineral (hydroxyapatite), the researchers have been able to calculate the precise magnitude of this electric field. Their findings indicate that it is sufficiently large within the required 50 microns of the crack tip to be sensed by the cells responsible for bone repair, directly implicating flexoelectricity in this process.

Furthermore, since the cells responsible for synthesising new bone tissue (osteoblasts) are known to attach close to the tip, it would appear that the electric field distribution signals this point as the centre of damage, becoming a moving beacon for repair efforts as the crack is healed.

These results hold promise for the prosthetics industry, where new materials that reproduced or amplified this flexoelectric effect could be used to guide tissue regeneration, leading to a more successful assimilation of implants.
-end-
The study was funded by an European Research Council grant, and has been led from the ICN2 with the collaboration of the Materials Science and Engineering Research Centre at the Universidad de Costa Rica (Costa Rica), the Computational Methods and Numerical Analysis Laboratory (LaCàN) at the Universitat Politècnica de Catalunya (Spain), and the École Politechnique Federale de Lausanne (EPFL, Switzerland).

Universitat Autonoma de Barcelona

Related Collagen Articles:

Implant infections could be banished thanks to scaffold breakthrough
Researchers in Ireland have taken a major step forward in the battle against medical implant infections.
Uncovering the biology of a painful and disfiguring pediatric disease
The study reveals a major physiological function for the CMG2 gene and demonstrates its interaction with collagen VI.
Untangling the knots in cell stress
In an article published in the Journal of Cell Biology, Tokiro Ishikawa and Kazutoshi Mori of Kyoto University describe how different UPR transducers are used selectively for protein correction.
Vanderbilt research unlocks molecular key to animal evolution and disease
The dawn of the Animal Kingdom began with a collagen scaffold that enabled the organization of cells into tissues.
Collagen-targeting PET probe may improve diagnosis and treatment of pulmonary fibrosis
A PET imaging probe developed by Massachusetts General Hospital investigators appears able to diagnose and stage pulmonary fibrosis -- an often life-shortening lung disease -- as well as monitor the response to treatment.
New tool for prognosis and choice of therapy for rheumatoid arthritis
In rheumatoid arthritis, antibodies are formed that affect the inflammation in the joints.
Combating wear and tear
A team of researchers led by University of Utah bioengineering professors has discovered that damage to collagen, the main building block of all human tissue, can occur much earlier at a molecular level from too much physical stress.
80-million-year-old dinosaur collagen confirmed
Utilizing the most rigorous testing methods to date, researchers from North Carolina State University have isolated additional collagen peptides from an 80-million-year-old Brachylophosaurus.
Corneal collagen cross-linking for keratoconus: Now data provide hint of benefit
Additional data from an Australian study now show an advantage over purely symptomatic treatment.
Collagen hydrogel scaffold and fibroblast growth factor-2 accelerate periodontal healing of class II
A new regenerative scaffold made of biosafe collagen hydrogel and collagensponge could possess the ability of retaining fibroblastic growth factor-2 (FGF2) and stimulate the periodontal tissue regeneration, according to new research published in The Open Dentistry Journal.

Related Collagen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".