Fanconi anemia: Insight from a green plant

January 19, 2018

Fanconi anemia is a human genetic disorder with severe effects, including an increased risk of cancer and infertility. Work in animal systems has identified many factors involved in Fanconi anemia and showed that these factors function in repair of DNA. However, despite extensive analysis in mammalian somatic cell lines, in-depth studies on the germ cells, which make egg and sperm cells, have been nearly impossible in animal model systems. Now, Peter Schlögelhofer's group at the University of Vienna, in collaboration with groups across Europe and the U.S., have used a model plant to investigate the role of a key protein, Fanconi anemia D2 protein (FANCD2), in a system where they can examine its function in germ cells. They found that FANCD2 is required for the exchange of genetic material by a previously unknown pathway that has implications for understanding this disease in humans.

During the meiotic cell divisions that produce sperm and eggs in both plants and animals, exchange of genetic material (crossovers) between chromosomes promotes the reshuffling of genetic traits and helps the chromosomes get into the right daughter cells. Crossovers require breakage and repair of the DNA, and many proteins involved in this process, including FANCD2, are conserved in plants and animals. Using Arabidopsis thaliana as a model organism, the authors revealed FANCD2's important function in meiotic crossover formation. The authors show that Arabidopsis FANCD2 belongs to a previously uncharted pathway that contributes to the formation of crossovers. Dr. Schlögelhofer comments "While the existence of such an additional mechanism has been suspected for a long time, our data provide the evidence for an involved protein factor." Charting this additional mechanism in model systems will allow researchers to explore the biological functions of these key proteins in ways impossible in animal systems and help us to understand the consequences of FANCD mutations identified in human patients.

Corresponding author Peter Schlögelhofer states "I especially like our FANCD2 story because it shows the power of Arabidopsis to help in understanding biological principles that are relevant beyond the field of plant sciences. Due to the conservation of the Fanconi anemia pathway, we are convinced that our study will strongly stimulate further research in meiotic crossover formation and human Fanconi anemia-related pathologies."
-end-
Author:

Jennifer Mach, PhD
jmach@aspb.org
Science Editor, The Plant Cell
http://orcid.org/0000-0002-1141-6306

American Society of Plant Biologists

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.