Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

January 19, 2018

DURHAM, N.C. - More than seven years after Pennsylvania officials requested that the disposal of radium-laden fracking wastewater into surface waters be restricted, a new Duke University study finds that high levels of radioactivity persist in stream sediments at three disposal sites.

The contamination is coming from the disposal of conventional, or non-fracked, oil and gas wastewater, which, under current state regulations, can still be treated and discharged to local streams.

"It's not only fracking fluids that pose a risk; produced water from conventional, or non-fracked, oil and gas wells also contains high levels of radium, which is a radioactive element. Disposal of this wastewater causes an accumulation of radium on the stream sediments that decays over time and converts into other radioactive elements," said Avner Vengosh, professor of geochemistry and water quality at Duke's Nicholas School of the Environment.

The level of radiation found in stream sediments at the disposal sites was about 650 times higher than radiation in upstream sediments. In some cases, it even exceeded the radioactivity level that requires disposal only at federally designated radioactive waste disposal sites.

"Our analysis confirms that this accumulation of radioactivity is derived from the disposal of conventional oil and gas wastewater after 2011, when authorities limited the disposal of unconventional oil and gas wastewater," said Nancy Lauer, a Nicholas School PhD student who led the study.

"The radionuclide ratios we measured in the sediments and the rates of decay and growth of radioactive elements in the impacted sediments allowed us to essentially age-date the contamination to after 2011," she explained.

The researchers published their findings in a peer-reviewed policy paper Jan. 4 in Environmental Science and Technology.

To conduct the study, they collected stream sediments from three wastewater disposal sites in western Pennsylvania, as well as three upstream sites, and analyzed the radioactive elements in the sediments. Samples were collected annually from 2014 to 2017 at disposal sites on Blacklick Creek in Josephine, on the Allegheny River in Franklin, and on McKee Run in Creekside.

In 2011, in response to growing public concern about the possible environmental and human health effects of fracking wastewater, Pennsylvania's Department of Environmental Protection requested that the discharge of fracking fluids and other unconventional oil and gas wastewater into surface waters be prohibited from central water-treatment facilities that release high salinity effluents. However, the disposal of treated wastewater from conventional oil and gas operations was allowed to continue.

"Despite the fact that conventional oil and gas wastewater is treated to reduce its radium content, we still found high levels of radioactive build-up in the stream sediments we sampled," Vengosh said. "Radium is attached to these sediments, and over time even a small amount of radium being discharged into a stream accumulates to generate high radioactivity in the stream sediments."

"While restricting the disposal of fracking fluids to the environment was important, it's not enough," he said. "Conventional oil and gas wastewaters also contain radioactivity, and their disposal to the environment must be stopped, too."
-end-
Nathaniel Warner, a former PhD student in Vengosh's lab at Duke who is now an assistant professor of civil and environmental engineering at Penn State University, coauthored the new study.

Funding came from the National Science Foundation (#EAR-1441497) and the Park Foundation.

CITATION: "Sources of Radium Accumulation in Stream Sediments Near Disposal Sites in Pennsylvania: Implications for Disposal of Conventional Oil and Gas Wastewater," Nancy Lauer, Nathaniel Warner, Avner Vengosh, Environmental Science and Technology, DATE Jan, 4, 2018, DOI: 10.1021/acs.est.7b04952

Duke University

Related Wastewater Articles from Brightsurf:

New material 'mines' copper from toxic wastewater
A team of scientists led by Berkeley Lab has designed a new material -- called ZIOS (zinc imidazole salicylaldoxime) -- that targets and traps copper ions from wastewater with unprecedented precision and speed.

SARS-CoV-2 RNA detected in untreated wastewater from Louisiana
A group of scientists have detected genetic material from SARS-CoV-2 in untreated wastewater samples collected in April 2020 from two wastewater treatment plants in Louisiana, USA.

Could COVID-19 in wastewater be infectious?
Bar-Zeev, and his postdoc student, Anne Bogler, together with other renowned researchers, indicate that sewage leaking into natural watercourses might lead to infection via airborne spray.

Researchers: What's in oilfield wastewater matters for injection-induced earthquakes
Specifically, he pointed out that oilfield brine has much different properties, like density and viscosity, than pure water, and these differences affect the processes that cause fluid pressure to trigger earthquakes.

Better wastewater treatment? It's a wrap
A shield of graphene helps particles destroy antibiotic-resistant bacteria and the free-floating genes in wastewater treatment plants.

Using electricity to break down pollutants left over after wastewater treatment
Pesticides, pharmaceutical products, and endocrine disruptors are some of the emerging contaminants often found in treated domestic wastewater, even after secondary treatment.

Anammox bacteria generate energy from wastewater while taking a breath
More energy-efficient wastewater treatment may be possible by harnessing anammox bacteria's surprising ability to 'breathe' solid-state matter.

IO hybrid adsorbent to remove hazardous Cadmium(II) from wastewater
In a paper published in NANO, a group of researchers from Hebei University of Technology, Tianjin, China have discovered an effective way to remove heavy metal Cadmium(II) from wastewater.

Using wastewater to monitor COVID-19
A recent review paper from an international research group shows how wastewater could provide a useful tool for monitoring COVID-19 and highlights the further research needed to develop this as a viable method for tracking virus outbreaks.

Rice engineers: Make wastewater drinkable again
Delivering water to city dwellers can become far more efficient, according to Rice University researchers who say it should involve a healthy level of recycled wastewater.

Read More: Wastewater News and Wastewater Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.