Nav: Home

Charge order and electron localization in a molecule-based solid

January 19, 2018

Charge ordering in mixed-valence compounds, which usually contain positively charged cations in more than one formal charge state, is of crucial importance for materials science. Many functional properties of materials like magnetism, magnetoresistance, ionic conductivity and superconductivity are found in mixed valence compounds. One of the very first attempts to understand the mechanism of a charge ordering transition dates back to 1939 when Evert Verwey, a Dutch chemist, observed a sudden jump in resistivity in the prototypic mixed valence compound magnetite, Fe3O4, near -150°C. He proposed that in the nearly metallic state of Fe3O4 at temperatures higher than -150°C, certain iron atoms are indistinguishable in the crystal lattice due to a full delocalization of charges. However, below this temperature a semiconducting state with a complex ordering pattern of charges over the available iron sites was established. In general, a transition from a charge-disordered into a charge-ordered state which is accompanied by a jump in electrical resistivity is nowadays called Verwey transition.

In the journal Science Advances now a research team of scientists from Germany and Slovenia reports a Verwey-type transition in a completely different class of mixed-valence compounds which is composed of negatively charged dioxygen molecules. The cesium compound Cs4O6 undergoes a phase transition from a state with indistinguishable molecular O2x- entities to a state with well- defined singly charged superoxide O2- and doubly charged peroxide O22- anions, which is accompanied by a corresponding change in charge transport dynamics. These results are supposed to shed new light on the mechanism of Verwey-type charge ordering phenomena.

"The Verwey-type transition in the cesium oxide Cs4O6 is conceptually more simple than the original one in Fe3O4" states Peter Adler, the first author of the study. Whereas in Fe3O4 the charge order state is complex and it is difficult to identify individual charge states the situation is more unambiguous in Cs4O6 as the molecular entities in the charge ordered state reveal the typical structural and magnetic features of the constituting paramagnetic superoxide and diamagnetic peroxide units. The authors have established the properties of Cs4O6 by using several experimental techniques, namely neutron diffraction for the study of the crystal structure as well several spectroscopic techniques for verifying a charge localization transition which is a typical hallmark for Verwey-type charge ordering processes. By contrast to Fe3O4 the present compound Cs4O6 remains magnetically disordered down to a temperature of -271°C which is only two degrees above the absolute zero point and it is much less conducting than Fe3O4. The molecular nature of the basic building units and the peculiar features of Cs4O6 should be favorable for disentangling the complex interplay of the charge, spin, and lattice contributions to Verwey-type charge ordering phenomena. The intertwining of the different degrees of freedom may in the future even be used to control new materials functionalities through the Verwey transition.

Contemporary examples for functional materials properties related to mixed-valence are high-temperature superconductivity in copper oxide-based superconductors where the superconducting state competes with a magnetic and charge order state or very large ("colossal") magnetoresistance effects in certain manganese oxides which occur in the vicinity of a transition from a delocalized to a more localized mixed-valence state. Accordingly, unravelling the mechanism of charge ordering processes in mixed-valence compounds is an important subject in materials science. The breakthrough of the present study is the observation of such charge ordering in a relatively simple crystal structure where novel physical phenomena is expected to emerge from intertwining of degrees of freedom pertinent to the well-defined electronically active oxygen molecular units.
The work was partly performed within the project LEMSUPER (Light Element Molecular Superconductivity) which was supported by the EU Seventh Framework Programme (FP7). Further on, the work was supported by the Slovenian Research Agency. The research involved cooperation of several institutions in Germany and Slovenia, namely the Max Planck institutes for Chemical Physics of Solids in Dresden and for Solid State Research in Stuttgart, the Helmholtz Centre for Materials and Energy in Berlin, the Justus-Liebig University in Giessen, the Jožef Stefan Institute in Ljubljana and the University of Ljubljana.

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Max Planck Institute for Chemical Physics of Solids

Related Crystal Structure Articles:

Machine learning technique speeds up crystal structure determination
A computer-based method could make it less labor-intensive to determine the crystal structures of various materials and molecules, including alloys, proteins and pharmaceuticals.
An improved method for protein crystal structure visualization
During crystallization atoms are arranged in a 3D lattice structured in a specific way.
Gazing into crystal balls to advance understanding of crystal formation
Researchers at The University of Tokyo Institute of Industrial Science conducted simulations considering and neglecting hydrodynamic interactions to determine whether or not these interactions cause the large discrepancy observed between experimental and calculated nucleation rates for hard-sphere colloidal systems, which are used to model crystallization.
4D imaging with liquid crystal microlenses
Most images captured by a camera lens are flat and two dimensional.
Solution of the high-resolution crystal structure of stress proteins from Staphylococcus
One of the main factors favoring a microorganism's survival in extreme conditions is preserving ribosomes -- a macromolecular complex comprising RNA and proteins
A laser, a crystal and molecular structures
Researchers have built a new tool to study molecules using a laser, a crystal and light detectors.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Crystal clear: Understanding magnetism changes caused by crystal lattice expansion
An international team including researchers from Osaka University demonstrated helimagnetic behavior in a cubic perovskite material by expanding the lattice through barium doping.
Capturing the surprising flexibility of crystal surfaces
Images taken using an atomic force microscope have allowed researchers to observe, for the first time, the flexible and dynamic changes that occur on the surfaces of 'porous coordination polymer' crystals when guest molecules are introduced.
How a crystal is solvated in water
How a molecule from a solid crystal structure is solvated in a liquid solvent has been observed at a molecular level for the first time by chemists at Ruhr-Universität Bochum.
More Crystal Structure News and Crystal Structure Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at