Nav: Home

Charge order and electron localization in a molecule-based solid

January 19, 2018

Charge ordering in mixed-valence compounds, which usually contain positively charged cations in more than one formal charge state, is of crucial importance for materials science. Many functional properties of materials like magnetism, magnetoresistance, ionic conductivity and superconductivity are found in mixed valence compounds. One of the very first attempts to understand the mechanism of a charge ordering transition dates back to 1939 when Evert Verwey, a Dutch chemist, observed a sudden jump in resistivity in the prototypic mixed valence compound magnetite, Fe3O4, near -150°C. He proposed that in the nearly metallic state of Fe3O4 at temperatures higher than -150°C, certain iron atoms are indistinguishable in the crystal lattice due to a full delocalization of charges. However, below this temperature a semiconducting state with a complex ordering pattern of charges over the available iron sites was established. In general, a transition from a charge-disordered into a charge-ordered state which is accompanied by a jump in electrical resistivity is nowadays called Verwey transition.

In the journal Science Advances now a research team of scientists from Germany and Slovenia reports a Verwey-type transition in a completely different class of mixed-valence compounds which is composed of negatively charged dioxygen molecules. The cesium compound Cs4O6 undergoes a phase transition from a state with indistinguishable molecular O2x- entities to a state with well- defined singly charged superoxide O2- and doubly charged peroxide O22- anions, which is accompanied by a corresponding change in charge transport dynamics. These results are supposed to shed new light on the mechanism of Verwey-type charge ordering phenomena.

"The Verwey-type transition in the cesium oxide Cs4O6 is conceptually more simple than the original one in Fe3O4" states Peter Adler, the first author of the study. Whereas in Fe3O4 the charge order state is complex and it is difficult to identify individual charge states the situation is more unambiguous in Cs4O6 as the molecular entities in the charge ordered state reveal the typical structural and magnetic features of the constituting paramagnetic superoxide and diamagnetic peroxide units. The authors have established the properties of Cs4O6 by using several experimental techniques, namely neutron diffraction for the study of the crystal structure as well several spectroscopic techniques for verifying a charge localization transition which is a typical hallmark for Verwey-type charge ordering processes. By contrast to Fe3O4 the present compound Cs4O6 remains magnetically disordered down to a temperature of -271°C which is only two degrees above the absolute zero point and it is much less conducting than Fe3O4. The molecular nature of the basic building units and the peculiar features of Cs4O6 should be favorable for disentangling the complex interplay of the charge, spin, and lattice contributions to Verwey-type charge ordering phenomena. The intertwining of the different degrees of freedom may in the future even be used to control new materials functionalities through the Verwey transition.

Contemporary examples for functional materials properties related to mixed-valence are high-temperature superconductivity in copper oxide-based superconductors where the superconducting state competes with a magnetic and charge order state or very large ("colossal") magnetoresistance effects in certain manganese oxides which occur in the vicinity of a transition from a delocalized to a more localized mixed-valence state. Accordingly, unravelling the mechanism of charge ordering processes in mixed-valence compounds is an important subject in materials science. The breakthrough of the present study is the observation of such charge ordering in a relatively simple crystal structure where novel physical phenomena is expected to emerge from intertwining of degrees of freedom pertinent to the well-defined electronically active oxygen molecular units.
-end-
The work was partly performed within the project LEMSUPER (Light Element Molecular Superconductivity) which was supported by the EU Seventh Framework Programme (FP7). Further on, the work was supported by the Slovenian Research Agency. The research involved cooperation of several institutions in Germany and Slovenia, namely the Max Planck institutes for Chemical Physics of Solids in Dresden and for Solid State Research in Stuttgart, the Helmholtz Centre for Materials and Energy in Berlin, the Justus-Liebig University in Giessen, the Jožef Stefan Institute in Ljubljana and the University of Ljubljana.

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Max Planck Institute for Chemical Physics of Solids

Related Crystal Structure Articles:

DIY crystal-makers get refurbished online cookbook
In response to popular demand, materials scientists at Duke University have resurrected an online cookbook of crystalline structures that started when the World Wide Web was Netscape Navigator and HTML 1.0.
Dawn of organic single crystal electronics
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal.
Crystallization made crystal clear
Researchers at the Weizmann Institute of Science have, for the first time, directly observed the process of crystallization on the molecular level, validating some recent theories about crystallization, as well as showing that if one knows how the crystal starts growing, one can predict the end structure.
Mapping the effects of crystal defects
MIT research offers insights into how crystal dislocations -- a common type of defect in materials -- can affect electrical and heat transport through crystals, at a microscopic, quantum mechanical level.
Scientists create new form of matter, a time crystal
Scientists are reporting in the journal Nature on the creation of a phase of matter, dubbed a time crystal, in which atoms move in a pattern that repeats in time rather than in space.
Most complex nanoparticle crystal ever made by design
The most complex crystal designed and built from nanoparticles has been reported by researchers at Northwestern University and the University of Michigan.
In-cell molecular sieve from protein crystal
Scientists at Tokyo Institute of Technology, RIKEN, and Kyoto Institute of Technology have applied rational crystal design to create protein crystals with extended porous network to accumulate exogenous molecules inside living cells.
Novel liquid crystal could triple sharpness of today's televisions
An international team of researchers has developed a new blue-phase liquid crystal that could enable televisions, computer screens and other displays that pack more pixels into the same space while also reducing the power needed to run the device.
Researcher's discovery of new crystal structure holds promise for optoelectronic devices
A Florida State University professor has observed a never-been-seen crystal structure that holds promise for optoelectronic devices.
Einstein in an iron crystal
Angle-resolved photoemission spectroscopy has enabled scientists from Forschungszentrum Jülich and LMU Munich to directly visualize the formation of shifts in the band structure (band gaps) of a sample of prototypical magnetic material as a response to the change in direction of a magnetic field.

Related Crystal Structure Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".