Nav: Home

Bio-renewable process could help 'green' plastic

January 19, 2018

MADISON, Wis. -- When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the way people thought about manufacturing: What if we weren't limited to the materials nature had to offer?

Over a century later, plastics are an abundant part of daily life. But these plastics are often derived from petroleum, contributing to reliance on fossil fuels and driving harmful greenhouse gas emissions. To change that, Great Lakes Bioenergy Research Center (GLBRC) scientists are trying to take the pliable nature of plastic in another direction, developing new and renewable ways of creating plastics from biomass.

Using a plant-derived solvent called GVL (gamma-Valerolactone), University of Wisconsin-Madison Professor of Chemical and Biological Engineering James Dumesic and his team have developed an economical and high-yielding way of producing furandicarboxylic acid, or FDCA. One of 12 chemicals the U.S. Department of Energy calls critical to forging a "green" chemical industry, FDCA is a necessary precursor to a renewable plastic called PEF (or polyethylene furanoate) as well as to a number of polyesters and polyurethanes.

The researchers published their findings Jan. 19, 2018 in the journal Science Advances.

As the bio-based substitute for PET (polyethylene terephthalate) -- its widely used, petroleum-derived counterpart -- PEF is rich in potential. PET currently has a market demand of close to 1.5 billion tons per year, and Coca-Cola, Ford Motors, H.J. Heinz, Nike and Procter & Gamble have all committed to developing a sustainably sourced, 100 percent plant-based PET for their bottles, packaging, apparel and footwear. PEF's potential to break into that sizeable market, however, has been hampered by the high cost of producing FDCA.

"Until now, FDCA has had a very low solubility in practically any solvent you make it in," says Ali Hussain Motagamwala, a UW-Madison graduate student in chemical and biological engineering and co-author of the study. "You have to use a lot of solvent to get a small amount of FDCA, and you end up with high separation costs and undesirable waste products."

Motagamwala and colleagues' new process begins with fructose, which they convert in a two-step process to FDCA in a solvent system composed of one part GVL and one part water. The end result is a high yield of FDCA that easily separates from the solvent as a white powder upon cooling.

"Using the GVL solvent solves most of the problems with the production of FDCA," says Motagamwala. "Sugars and FDCA are both highly soluble in this solvent, you get high yields, and you can easily separate and recycle the solvent."

Other features of the process contribute to its robust economics. The system doesn't require costly mineral acids for catalysis, doesn't produce waste salts, and you can separate out the FDCA crystals from the solvent by simply cooling the reaction system.

The team's techno-economic analysis suggests that the process could currently produce FDCA at a minimum selling price of $1,490 per ton. With improvements, including lowering the cost of feedstock and reducing the reaction time, the price could reach $1,310 per ton, which would make their FDCA cost-competitive with some fossil fuel-derived plastic precursors.

"We think this is the streamlined and inexpensive approach to making FDCA that many people in the plastics industry have been waiting for," says Dumesic. "Our hope is that this research opens the door even further to cost-competitive renewable plastics."

The Wisconsin Alumni Research Foundation is working to license GVL technology for use in bioplastics production.
-end-
--Krista Eastman, 608-890-2168, krista.eastman@wisc.edu

University of Wisconsin-Madison

Related Plastics Articles:

Turning car plastics into foams with coconut oil
End-of-life vehicles, with their plastic, metal and rubber components, are responsible for millions of tons of waste around the world each year.
Metal-ion catalysts and hydrogen peroxide could green up plastics production
Researchers at the University of Illinois are contributing to the development of more environmentally friendly catalysts for the production of plastic and resin precursors that are often derived from fossil fuels.
Researchers invent process to make sustainable rubber, plastics
Synthetic rubber and plastics -- used for manufacturing tires, toys and myriad other products -- are produced from butadiene, a molecule traditionally made from petroleum or natural gas.
Ridding the oceans of plastics by turning the waste into valuable fuel
Billions of pounds of plastic waste are littering the world's oceans.
Researchers use light to remotely control curvature of plastics
Researchers have developed a technique that uses light to get flat, plastic sheets to curve into spheres, tubes or bowls.
New use for paper industry's sludge and fly ash in plastics
VTT Technical Research Centre of Finland examined, as part of the EU's Reffibre project, whether new industrial applications could be developed for various types of sludge and fly ash generated by the paper and board industry.
New polymer additive could revolutionize plastics recycling
Only 2 percent of the 78 million tons of manufactured plastics are currently recycled into similar products because polyethylene (PE) and polypropylene (PP), which account for two-thirds of the world's plastics, have different chemical structures and cannot be efficiently repurposed together.
Dad's exposure to phthalates in plastics may affect embryonic development
A new study led by environmental health scientist Richard Pilsner at the University of Massachusetts Amherst, one of the first to investigate whether preconception exposures to phthalates in fathers has an effect on reproductive success via embryo quality, found that exposures from select chemicals tested were associated with 'a pronounced decrease in blastocyst quality' at an early stage in embryo development.
Cutting food waste, but tossing more packaging: Our plastics conundrum
These days, grocery stores contain aisle after aisle of products encased in plastic packaging.
Common plastics chemical BPA linked to preterm birth
Higher concentrations of the common plastics chemical and environmental pollutant Bisphenol A, or BPA, in a pregnant mother's blood may be a contributing factor in preterm births, according to a new study from the University of Texas Medical Branch at Galveston.

Related Plastics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".