How short circuits in lithium metal batteries can be prevented

January 19, 2021

There are high hopes for the next generation of high energy-density lithium metal batteries, but before they can be used in our vehicles, there are crucial problems to solve. An international research team led by Chalmers University of Technology, Sweden, has now developed concrete guidelines for how the batteries should be charged and operated, maximising efficiency while minimising the risk of short circuits.

Lithium metal batteries are one of several promising concepts that could eventually replace the lithium-ion batteries which are currently widely used - particularly in various types of electric vehicles.

The big advantage of this new battery type is that the energy density can be significantly higher. This is because one electrode of a battery cell - the anode - consists of a thin foil of lithium metal, instead of graphite, as is the case in lithium-ion batteries. Without graphite, the proportion of active material in the battery cell is much higher, increasing energy density and reducing weight. Using lithium metal as the anode also makes it possible to use high-capacity materials at the other electrode - the cathode. This can result in cells with three to five times the current level of energy-density.

The big problem, however, is safety. In two recently published scientific articles in the prestigious journals Advanced Energy Materials and Advanced Science, researchers from Chalmers University of Technology, together with colleagues in Russia, China and Korea, now present a method for using the lithium metal in an optimal and safe way. It results from designing the battery in such a way that, during the charging process, the metal does not develop the sharp, needle-like structures known as dendrites, which can cause short circuits, and, in the worst cases, lead to the battery catching fire. Safety during charging and discharging is the key factor.

"Short circuiting in lithium metal batteries usually occurs due to the metal depositing unevenly during the charging cycle and the formation of dendrites on the anode. These protruding needles cause the anode and the cathode to come into direct contact with one another, so preventing their formation is therefore crucial. Our guidance can now contribute to this," says researcher Shizhao Xiong at the Department of Physics at Chalmers.

There are a number of different factors that control how the lithium is distributed on the anode. In the electrochemical process that occurs during charging, the structure of the lithium metal is mainly affected by the current density, temperature and concentration of ions in the electrolyte.

The researchers used simulations and experiments to determine how the charge can be optimised based on these parameters. The purpose is to create a dense, ideal structure on the lithium metal anode.

"Getting the ions in the electrolyte to arrange themselves exactly right when they become lithium atoms during charging is a difficult challenge. Our new knowledge about how to control the process under different conditions can contribute to safer and more efficient lithium metal batteries," says Professor Aleksandar Matic from Chalmers' Department of Physics.
More about: The research project

The international research collaboration between Sweden, China, Russia and Korea is led by Professor Aleksandar Matic and researcher Shizhao Xiong at the Department of Physics at Chalmers. The research in Sweden is funded by FORMAS, STINT, the EU and Chalmers Areas of Advance.

More about: The scientific publications

The scientific article 'Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal' has been published in Advanced Science. The article is written by Yangyang Liu, Xieyu Xu, Matthew Sadd, Olesya O. Kapitanova, Victor A. Krivchenko, Jun Ban, Jialin Wang, Xingxing Jiao, Zhongxiao Song, Jiangxuan Song, Shizhao Xiong and Aleksandar Matic.

The researchers are active at Lomonosov Moscow State University and the Moscow Institute of Physics and Technology in Russia, Xi'an Jiaotong University in China and at Chalmers University of Technology.

The scientific article 'Role of Li-Ion Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode' has been published in Advanced Energy Materials. The article is written by Xieyu Xu, Yangyang Liu, Jang-Yeon Hwang, Olesya O. Kapitanova, Zhongxiao Song, Yang-Kook Sun, Aleksandar Matic and Shizhao Xiong.

The researchers are active at Lomonosov Moscow State University, Russia, Xi'an Jiaotong University in China, Chonnam National University and Hanyang University in Korea, as well as at Chalmers University of Technology.

More about: Next generation batteries

There are a number of battery concepts which researchers hope will eventually be able to replace today's lithium-ion batteries. Solid state batteries, lithium-sulphur batteries and lithium air batteries are three oft-mentioned examples. In all these concepts, lithium metal needs to be used on the anode side to match the capacity of the cathode and maximise the energy density of the cell. The goal is to produce safe, high energy-density batteries that take us further, at lower cost - both economically and environmentally. So far, researchers estimate that a breakthrough to the next generation of batteries is at least ten years away.

At Chalmers, research is conducted in a number of projects in the field of batteries and the researchers participate in both national and international collaborations and are part of the large European initiative 2030+ in the BIGMAP project.

For more information contact:

Shizhao Xiong,
Researcher, Department of Physics,
Chalmers University of Technology, Sweden,
+46 31 7726284,

Aleksandar Matic,
Professor, Department of Physics,
Chalmers University of Technology, Sweden,
+46 31 772 51 76,

Chalmers University of Technology

Related Dendrites Articles from Brightsurf:

Reelin-Nrp1 interaction regulates neocortical dendrite development
Reelin exhibits a context-dependent function during brain development; however, its underlying mechanism is not well understood.

No more playing with fire: Study offers insight into 'safer' rechargeable batteries
Lithium-ion batteries are used in various electronic devices. But, they also come with potential hazards, particularly if the battery is damaged or overcharged.

New lithium battery charges faster, reduces risk of device explosions
Cell phone batteries often heat up and, at times, can burst into flames.

Protecting the neuronal architecture
Protecting nerve cells from losing their characteristic extensions, the dendrites, can reduce brain damage after a stroke.

'Spillway' for electrons could keep lithium metal batteries from catching fire
UC San Diego nanoengineers developed a safety feature that prevents lithium metal batteries from rapidly overheating and catching fire in case of an internal short circuit.

Potassium metal battery emerges as a rival to lithium-ion technology
In research published in Proceedings of the National Academy of Sciences, researchers from Rensselaer Polytechnic Institute demonstrate how they can overcome a persistent challenge known as dendrites to create a metal battery that performs nearly as well as a lithium-ion battery, but relies on potassium -- a much more abundant and less expensive element.

Researchers show advance in next-generation lithium metal batteries
A Washington State University research team has developed a way to address a major safety issue with lithium metal batteries - an innovation that could make high-energy batteries more viable for next-generation energy storage.

A new method to study lithium dendrites could lead to better, safer batteries
Lithium ion batteries often grow needle-like structures between electrodes that can short out the batteries and sometimes cause fires.

Newly identified dendritic action potentials give humans unique brain power
Newly discovered action potentials in neuronal dendrites neurons uniquely amplify the computational power of the human brain, according to a new study.

Dendrites filtering neuron's excitement
Kyoto University research shows that Purkinje cell dendrites filter out signals to the Soma.

Read More: Dendrites News and Dendrites Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to