Clocking electron movements inside an atom

January 19, 2021

An international consortium of scientists, initiated by Reinhard Kienberger, Professor of Laser and X-ray Physics at the Technical University of Munich (TUM), several years ago, has made significant measurements in the femtosecond range at the U.S. Stanford Linear Accelerator Center (SLAC).

However, on these miniscule timescales, it is extremely difficult to synchronize the X-ray pulse that sparks a reaction in the sample on the one hand and the laser pulse which 'observes' it on the other. This problem is called timing jitter, and it is a major hurdle in ongoing efforts to perform time-resolved experiments at XFELs with ever-shorter resolution.

Now, a large international research team has developed a method to get around this problem at XFELs and demonstrated its efficacy by measuring a fundamental decay process in neon gas.

Good timing can avoid radiation damage

Many biological systems - and some non-biological ones - suffer damage when they are excited by an X-ray pulse from an XFEL. One of the causes of damage is the process known as Auger decay. The X-ray pulse ejects photoelectrons from the sample, leading to their replacement by electrons in outer shells. As these outer electrons relax, they release energy which can later induce the emission of another electron, known as an Auger electron.

Radiation damage is caused by both the intense X-rays and the continued emission of Auger electrons, which can rapidly degrade the sample. Timing this decay would help to evade radiation damage in experiments studying different molecules. In addition, Auger decay is a key parameter in studies of exotic, highly excited states of matter, which can only be investigated at XFELs. Research team delivers pioneering and highly accurate approach

To chart Auger decay the scientists used a technique dubbed self-referenced attosecond streaking, which is based on mapping the electrons in thousands of images and deducing when they were emitted based on global trends in the data.

For the first application of their method, the team used neon gas, where the decay timings have been inferred in the past. After exposing both photoelectrons and Auger electrons to an external 'streaking' laser pulse, the researchers determined their final kinetic energy in each of tens of thousands of individual measurements.

"Crucially, in each measurement, the Auger electrons always interact with the streaking laser pulse slightly later than the photoelectrons displaced initially, because they are emitted later," says Prof. Reinhard Kienberger, who helped to develop the experiment's design. "This constant factor forms the foundation of the technique." By combining so many individual observations, the team was able to construct a detailed map of the physical process, and thereby determine the characteristic time delay between the photo- and Auger emission. Streaking method leads to success

The required high time resolution is made possible by the so-called streaking method. "This technique is successfully applied in our laboratory. In several preliminary papers of our group, we have performed time-resolved measurements on free-electron lasers using the streaking method," says TUM PhD student Albert Schletter, co-author of the publication. "Using this method, we were able to measure the delay between X-ray ionization and Auger emission in neon gases with the highest precision," explains lead author Dan Haynes of Hamburg's Max Planck Institute for the Structure and Dynamics of Matter.

The researchers are hopeful that self-referenced streaking will have a broader impact in the field of ultrafast science. "Self-referenced streaking may facilitate a new class of experiments benefitting from the flexibility and extreme intensity of XFELs without compromising on time resolution," adds co-author Markus Wurzer, who is a PhD student of Prof. Kienberger.
-end-


Technical University of Munich (TUM)

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.