Alcohols exhibit quantum effects

January 19, 2021

Skoltech scientists and their colleagues from the Russian Quantum Center revealed a significant role of nuclear quantum effects in the polarization of alcohol in an external electric field. Their research findings are published in The Journal of Physical Chemistry.

Molecular liquids, such as water or alcohols, are known to be polar. Polarity results from the charge separation mechanism, the microscopic description of which still bears some open questions. In fact, the basic description of the polarization rests on a hundred-years-old concept: the dielectric polarization is connected to the molecular dipole moment due to their hydroxyl functional group (-OH). Orientations of these dipoles would explain the high polarizability of alcohols and the corresponding high dielectric constant. Still, the discrepancy between the measured dielectric constants and those determined by calculations shows that other mechanisms not considered so far may play an important role, too. As the exact mechanism of the dielectric response of alcohols is still unclear, new ideas should be proposed and tested.

"To address the problem, we experimentally investigated and compared the dielectric responses of a series of monohydric alcohols with different molecular chain lengths and found remarkable similarities which could not be explained by the conventional mechanism of rotating molecular dipoles," says Dr. Ryzhov, a Skoltech Research Scientist in charge of the experimental part of the study. "Notwithstanding the conventional wisdom, we found that the basic mechanism of the dielectric polarization in alcohols to be of a quantum mechanical nature: the tunneling of excess protons and the consequent formation of intermolecular dipoles with proton-holes. These dipoles are the actual ones that determine the dielectric response from dc up to THz, irrespective of the molecule geometry, hence orientation", adds Professor Ouerdane from the Skoltech Center for Energy Science and Technology (CEST). "Our research provides new insight into the properties of liquid dielectrics. The core assumption of our model pertains to a novel understanding of dielectric polarization phenomena in polar liquids employing nuclear quantum effects," concludes Vasily Artemov, a Senior Research Scientist at Skoltech and the leading author of the paper.
-end-
The authors acknowledge the Global Campus Program, which allowed inviting Ms. Emma Carlsen, BSc in Chemistry from Brigham Young University, USA, who assisted with experiments during her two-month stay at Skoltech. We welcome talented international students to join us in Russia to perform cutting-edge research.

Skolkovo Institute of Science and Technology (Skoltech)

Related Polarization Articles from Brightsurf:

Highly sensitive detection of circularly polarized light without a filter
Japanese scientists developed a photodiode using a crystalline film composed of lead perovskite compounds with organic chiral molecules to detect circularly polarized light without a filter.

Anti-hacking based on the circular polarization direction of light
The Internet of Things (IoT) allowing smart phones, home appliances, drones and self-driving vehicles to exchange digital information in real time requires a powerful security solution, as it can have a direct impact on user safety and assets.

Germanium telluride's hidden properties at the nanoscale revealed
Germanium Telluride is an interesting candidate material for spintronic devices.

FAST reveals mystery of fast radio bursts from the universe
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) has revealed some mystery of the fast radio bursts, according to a study published in Nature on Oct.

Graphene detector reveals THz light's polarization
Physicists have created a broadband detector of terahertz radiation based on graphene.

Squaring the circle -- Breaking the symmetry of a sphere to control the polarization of light
Scientists at Tokyo Institute of Technology (Tokyo Tech, Japan) and Institute of Photonic Sciences (ICFO, Spain) develop a method to generate circularly polarized light from the ultimate symmetrical structure: the sphere.

Optical shaping of polarization anisotropy in a laterally-coupled-quantum-dot dimer
Coupled-quantum-dot (CQD) structures are considered to be an important building block in the development of scalable quantum devices.

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
A hemispherical vanadium oxide cluster has a cavity that can accommodate a bromine molecule.

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities
A plasmonic spin-Hall nanograting structure that simultaneously detects both the polarization and phase singularities of the incident beam is reported.

A new theory about political polarization
A new model of opinion formation shows how the extent to which people like or dislike each other affects their political views -- and vice versa.

Read More: Polarization News and Polarization Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.