Scientists reveal structure of plants' energy generators

January 19, 2021

Researchers have revealed the first atomic structures of the respiratory apparatus that plants use to generate energy, according to a study published today in eLife.

The 3D structures of these large protein assemblies - the first described for any plant species - are a step towards being able to develop improved herbicides that target plant respiration. They could also aid the development of more effective pesticides, which target the pest's metabolism while avoiding harm to crops.

Most organisms use respiration to harvest energy from food. Plants use photosynthesis to convert sunlight into sugars, and then respiration to break down the sugars into energy. This involves tiny cell components called mitochondria and a set of five protein assemblies that arrange themselves in an 'electron transport train'.

"Knowing how plants convert energy through respiration is a crucial part of understanding how plants grow, how they adapt to changes in the environment and what strategies we can use to improve crop yields," explains first author Maria Maldonado, a postdoctoral fellow at the Department of Molecular and Cellular Biology, University of California, Davis (UC Davis), US. "Yet although the 3D structures of respiration components are well understood in mammals, fungi and bacteria, the technical challenges of gathering pure samples of mitochondrial complexes in plants mean these structures remain largely unknown."

The team set out to obtain 3D structures of three components in the electron transport chain - complex III, complex IV and supercomplex III-IV. They extracted mitochondria complexes from mung bean sprouts treated with a gentle detergent and then stabilised them before using cryo-electron microscopy to generate high-resolution structures. Based on these structures, the team then built atomic models showing how the complexes interact with other molecules, such as other proteins, ions and lipids. For each of the three complexes, they were able to determine the number and structure of subunits, and the likely molecules that bind to them and how flexible the structures are.

Their models showed that several aspects of the complexes are shared between plants, mammals, fungi and bacteria, including several components that were originally thought to exist only in plants. However, the team also found several features of the complexes that are unique to plants, including the way the supercomplex III-IV assembles. This is important, because many agricultural herbicides and pesticides are designed to interfere with the respiratory complexes, and this finding could help to make them more selective for the pests they are intended to kill.

"Our work provides high-resolution structures of plant respiratory complexes that reveal plant-specific features, allowing for the development of more selective inhibitors as herbicides and pesticides," concludes senior author James Letts, Assistant Professor at the Department of Molecular and Cellular Biology, UC Davis, US. "Further comparative analyses of these structures with the growing number of respiratory complexes will allow us to understand the fundamental principles of respiration across the tree of life."
-end-
Reference

The paper 'Atomic structures of respiratory complex III2, complex IV and supercomplex III2-IV from vascular plants' can be freely accessed online at https://doi.org/10.7554/eLife.62047. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Media Relations Manager
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife is a non-profit organisation created by funders and led by researchers. Our mission is to accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours. We work across three major areas: publishing, technology and research culture. We aim to publish work of the highest standards and importance in all areas of biology and medicine, including Plant Biology and Structural Biology and Molecular Biophysics, while exploring creative new ways to improve how research is assessed and published. We also invest in open-source technology innovation to modernise the infrastructure for science publishing and improve online tools for sharing, using and interacting with new results. eLife receives financial support and strategic guidance from the Howard Hughes Medical Institute, the Knut and Alice Wallenberg Foundation, the Max Planck Society and Wellcome. Learn more at https://elifesciences.org/about.

To read the latest Plant Biology research published in eLife, visit https://elifesciences.org/subjects/plant-biology.

And for the latest in Structural Biology and Molecular Biophysics, see https://elifesciences.org/subjects/structural-biology-molecular-biophysics.

eLife

Related Pesticides Articles from Brightsurf:

More plant diversity, less pesticides
Increasing plant diversity enhances the natural control of insect herbivory in grasslands.

In pursuit of alternative pesticides
Controlling crop pests is a key element of agriculture worldwide, but the environmental impact of insecticides is a growing concern.

Two pesticides approved for use in US harmful to bees
A previously banned insecticide, which was approved for agricultural use last year in the United States, is harmful for bees and other beneficial insects that are crucial for agriculture, and a second pesticide in widespread use also harms these insects.

Dingoes have gotten bigger over the last 80 years - and pesticides might be to blame
The average size of a dingo is increasing, but only in areas where poison-baits are used, a collaborative study led by UNSW Sydney shows.

Pesticides can protect crops from hydrophobic pollutants
Researchers have revealed that commercial pesticides can be applied to crops in the Cucurbitaceae family to decrease their accumulation of hydrophobic pollutants, thereby improving crop safety.

Honeybee lives shortened after exposure to two widely used pesticides
The lives of honeybees are shortened -- with evidence of physiological stress -- when they are exposed to the suggested application rates of two commercially available and widely used pesticides.

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.

A proposal to change environmental risk assessment for pesticides
Despite regulatory frameworks designed to prevent environmental damage, pesticide use is still linked to declines in insects, birds and aquatic species, an outcome that raises questions about the efficacy of current regulatory procedures.

SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.

Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.

Read More: Pesticides News and Pesticides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.