Magnetic nanomaterials become an effective treatment against liver fibrosis

January 20, 2020

A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from NUST MISiS and RWTH Aachen University (Germany) compared different treatments against liver fibrosis and published the results of their study in the Cells journal. In the course of this disease liver tissue is replaced with connective (cicatricial) tissue preventing the organ from its normal functioning. According to the scientists, magnetic nanomaterials may become a basis for a completely new approach to anti-fibrosis treatment and help avoid the issues associated with traditional therapeutic methods.

Fibrosis may affect different body organs. It develops as a reaction to long-time inflammation and is supposed to isolate the inflammation site from surrounding tissues. For example, chronic liver fibrosis may occur if the liver is constantly influenced by toxins, viruses, or metabolic disturbances. Liver damage is caused by the hepatocytes death, the main type of liver cells that secure the functioning of the organ. As hepatocytes die and are replaced with connective tissue cells, liver functions decrease, and if a patient receives no treatment, cirrhosis may develop. Cirrhosis is a fatal illness: patients with it live for 2-4 years and die in excruciating pain. On its early stages fibrosis exhibits no symptoms and is often diagnosed when a patient starts to experience serious liver failure.

Currently, there are few efficient methods for treating liver fibrosis, and all of them work indirectly -- mainly by means of reducing the anti-inflammatory reactions. Scientists are working on new medicinal drugs that would affect the regulatory mechanisms of connective tissue development. The main role in this process is played by hepatic stellate cells, therefore they have been chosen as the targets of the drugs.

Despite the advantages of the new drugs, their targeted delivery remains a complex task. The solution may lie in the use of magnetic nanoparticles as carriers. The most widely spread therapeutic magnetic nanoparticles are based on iron oxide. Their size varies from 1 to 10 nm, which is smaller than any animal cell, and their movements in the body can be regulated using an external magnetic field. In actual practice nanoparticles are never used in their pure form, but are hybridized with other materials, for example, placed inside polymeric capsules on the stage of synthesis. This allows the scientists to regulate the properties of the particles: their charge, stability in the environments with different acidity, ability to penetrate cells, and so on. Hybridizing also reduces their possible toxicity.

Hybrid nanoparticles can be used not only to treat, but also to diagnose liver diseases. If molecules that bind specifically with liver connective tissue cells are placed on the surface of such particles, one can use MRI to visualize the areas of their accumulation and thus identify the sites of cirrhosis. The new method might help the patients avoid painful biopsies that are currently considered a standard procedure in liver fibrosis diagnostics.

"Targeted drug delivery using magnetic nanoparticles is not a new approach; for example, they are currently being clinically tested as the carriers of docetaxel, a drug against prostate cancer. Studies suggest that magnetic nanoparticles can effectively accumulate in the functional tissues of the liver and therefore can be used as drug molecule carriers in the therapy of liver fibrosis. Our laboratory works in the same field: for example, we carry out the tests of 'magnetic tweezers' allowing one to move single cells from one place to another. We are also involved in the synthesis of nanoparticles for biomedical applications," said Valeria Rodionova, the head of the Laboratory for New Magnetic Materials.
-end-


Immanuel Kant Baltic Federal University

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.