Climate-related species extinction possibly mitigated by newly discovered effect

January 20, 2021

Changes in climate that occur over short periods of time influence biodiversity. For a realistic assessment of these effects, it is necessary to also consider previous temperature trends going far back into Earth's history. Researchers from the University of Bayreuth and the University of Erlangen-Nuremberg show this in a paper for Nature Ecology and Evolution. According to the paper, future climate-related species extinction could be less severe than predictions based only on the current trend of global warming. However, the researchers do not give the all-clear. At present, the effects of climate change are being exacerbated by human intervention.

The research team led by Bayreuth ecologist Prof. Dr. Manuel Steinbauer used palaeobiological and climate science models to investigate how a temperature trend over a long period of time and a subsequent short-term temperature change together affect species extinction. For this purpose, research data on eight different groups of marine and terrestrial animals were combined and analysed. In total, these groups include around 3,200 genera and more than 46,000 species. One of the key findings of the study was that the extent to which short-term temperature changes affect species diversity depends largely on the context of geographic and climatic history. If a long-lasting cooling is intensified by a subsequent short-term cooling, the climate-related extinction risk of the studied genera increases by up to 40 percent. However, this risk decreases if a long-term cooling of the Earth, such as occurred 40 million years ago up to the industrial age, is followed by a short-term warming.

The researchers explain the effect they discovered by the fact that every species develops adaptations to certain climatic conditions in the course of its evolution. They retain these adaptations over a period of hundreds of thousands or millions of years. A long-term cooling therefore moves the species further and further away from the living conditions that are favourable for them and increases the risk of extinction. If a brief warming now follows, the habitat of the species will again approach the preferred climate. "Further studies are still needed to apply the results of our now published work to climate change as we are currently experiencing it. However, it seems very possible that human-induced global warming that began with the industrial age does not threaten global biodiversity as much as some predictions assume," explains Gregor Mathes M.Sc., first author of the study, who is currently writing a doctoral thesis in palaeobiology at the Universities of Bayreuth and Erlangen-Nuremberg.

"In the next two years, we wish to investigate even more closely the extent to which current forecasts of climate-induced species loss should be adjusted given that they ignore the context of geographic and climatic history. In the current biodiversity crisis, climate change is only one of many causes of species extinction. We humans are intervening in nature so extensively that a large number of species are endangered or have already disappeared from our planet forever as a result," Prof. Dr. Manuel Steinbauer from the Bayreuth Centre for Ecology and Environmental Research (BayCEER) adds.
-end-
The research team from Bayreuth and Erlangen is part of the research group TERSANE („Temperature-Related Stresses as a Unifying Principle in Ancient Extinctions"), in which scientists from all over Germany use fossil evidence to research climate-related extinctions.

Research Funding: The research that led to the study now published was funded by the German Research Foundation as part of the TERSANE research group from its "PastKey" project, and by the European Research Council (ERC) from the "Humans on Planet Earth (HOPE)" project.

Universität Bayreuth

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.