New sodium oxide paves the way for advanced sodium-ion batteries

January 20, 2021

Skoltech researchers and their collaborators from France, the US, Switzerland, and Australia were able to create and describe a mixed oxide Na(Li1/3Mn2/3)O2 that holds promise as a cathode material for sodium-ion batteries, which can take one day complement or even replace lithium-ion batteries. The paper was published in the journal Nature Materials.

Lithium-ion batteries are powering the modern world of consumer devices and driving a revolution in electric transportation. But since lithium is rather rare and challenging to extract from an environmental standpoint, researchers and engineers have been looking for more sustainable and cost-effective alternatives for quite some time now.

One option is sodium-ion technology, as sodium is much more abundant than lithium. Na-ion batteries, however, still struggle to provide high energy density and cycling stability. Thus, the search for an optimal design for Na-based cathodes is underway in laboratories across the world.

Skoltech Professor and Director of the Center for Energy Science and Technology Artem Abakumov and PhD student Anatolii Morozov were part of an international team that studied the compound Na(Li1/3Mn2/3)O2, patented by Renault. This compound showed promise as a cathode material with high energy density, no voltage fade over multiple charge cycles, and moisture stability.

"We have performed all the transmission electron microscopy (TEM) studies using the equipment at Advanced Imaging Core Facility of Skoltech. We investigated the crystal structure of Na(Li1/3Mn2/3)O2 by electron diffraction and directly visualized it with atomic resolution scanning transmission electron microscopy techniques. Furthermore, we investigated this material at various states of charge by TEM, which allowed us to trace the evolution of its crystal structure during the electrochemical cycling," Morozov says.

Among other things, the team found that the new compound possesses a reversible specific discharge capacity of 190 mAh/g, which is a relatively high value for sodium-ion battery cathode materials. Morozov also demonstrates good capacity retention and moisture resistance, which is unusual for compounds of this kind. "Moreover, no significant voltage fade was observed during prolonged cycling of Na(Li1/3Mn2/3)O2; it's a key drawback of similar Li-rich layered cathode materials," the Skoltech PhD student says.

However, despite these promising properties, Na(Li1/3Mn2/3)O2 exhibits a large voltage hysteresis during charge and discharge, leading to a decrease in the energy efficiency of the cathode material can become an obstacle in commercial implementation. "We assume that the appearance of a large voltage hysteresis is associated with the migration of Mn within the structure. Thus, in the future, it is necessary to develop a model for cation ordering and find a path to control it to overcome this issue," Anatolii Morozov notes.

"The team used Titan Themis Z electron microscope at our Advanced Imaging Core Facility (AICF), which allows to visualize single atoms in the crystal lattice of material and study its structure and how it relates to the properties of that material. But top-level equipment is necessary but not enough for impressive scientific results; we see our staff scientists and students' skills as crucial and invest a lot in the development of those skills. With Prof. Abakumov being a Research Advisor of AICF, close scientific collaboration between our team and Skoltech scientists becomes possible. This gives Skoltech a competitive advantage when it comes to the implementation of complex research projects or development of unique technologies." notes Yaroslava Shakhova, Head of the Skoltech Advanced Imaging Core Facility.
-end-
Other organizations involved in this research include Chimie du Solide-Energie, Collège de France; Sorbonne Université; Renault Technocentre; Réseau sur le Stockage Electrochimique de l'Energie (RS2E); Université d'Orléans; Université de Pau et des Pays de l'Adour; Lawrence Berkeley National Laboratory; Paul Scherrer Institute; The University of Sydney; Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation; University of Illinois at Chicago; University of Montpellier.

Skoltech is a private international university located in Russia. Established in 2011 in collaboration with the Massachusetts Institute of Technology (MIT), Skoltech is cultivating a new generation of leaders in science, technology, and business researching breakthrough fields. It is promoting technological innovation intending to solve critical problems that face Russia and the world. Skoltech is focusing on six priority areas: data science and artificial intelligence, life sciences, advanced materials and modern design methods, energy efficiency, photonics, and quantum technologies, and advanced research. Web: https://www.skoltech.ru/.

Skolkovo Institute of Science and Technology (Skoltech)

Related Crystal Structure Articles from Brightsurf:

Getting single-crystal diamond ready for electronics
Researchers from Osaka University and collaborating partners polished single-crystal diamond to near-atomic smoothness without damaging it.

Crystal structure of SARS-CoV-2 papain-like protease
The pandemic of coronavirus disease 2019 (COVID-19) is changing the world like never before.

Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites
Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites.

Photonic crystal light converter
Spectroscopy is the use of light to analyze physical objects and biological samples.

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution
Solar energy researchers are shining their scientific spotlight on materials with a crystal structure discovered nearly two centuries ago.

Crystal wars
Scientists at The University of Tokyo and Fudan University researched the process of crystallization in which competing structural forms coexist.

Melting a crystal topologically
Physicists at EPFL have successfully melted a very thin crystal of magnetic quasi-particles controllably, as turning ice into water.

The makings of a crystal flipper
Hokkaido University scientists have fabricated a crystal that autonomously flips back and forth while changing its flipping patterns in response to lighting conditions.

Crystal power
Scientists at the US Department of Energy's Argonne National Laboratory have created and tested a single-crystal electrode that promises to yield pivotal discoveries for advanced batteries under development worldwide.

Pressing 'pause' on nature's crystal symmetry
From snowflakes to quartz, nature's crystalline structures form with a reliable, systemic symmetry.

Read More: Crystal Structure News and Crystal Structure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.