Merging technologies with color to avoid design failures

January 20, 2021

Various software packages can be used to evaluate products and predict failure; however, these packages are extremely computationally intensive and take a significant amount of time to produce a solution. Quicker solutions mean less accurate results.

To combat this issue, a team of Penn State researchers studied the use of machine learning and image colorization algorithms to ease computational load, maintain accuracy, reduce time and predict strain fields for porous materials. They published their work in the Journal of Computational Materials Science with accompanying presentations and proceedings in Procedia Engineering.

"There is always a human side to design," said Chris McComb, assistant professor of engineering design in the School of Engineering Design, Technology, and Professional Programs. "There are potentially life-saving products that require additive manufacturing and can be frustrating to design. These simulations and evaluations take a long time, so it's important for us to help make it faster and easier to deliver safe products."

The authors include Pranav Milind Khanolkar, a spring 2020 industrial engineering master's alumnus; Aaron Abraham, industrial engineering undergraduate student; Saurabh Basu, assistant professor of industrial engineering; and McComb.

As part of his master's degree, Khanolkar investigated the use of ABAQUS, a widely used software for performing detailed simulations in additive manufacturing. According to the researchers, the software can be problematic because its speed and performance level rely on a computer's hardware processing power.

To speed up the simulations, the team implemented machine learning algorithms to reduce the exclusive use of computationally demanding finite element analysis (FEA). Explained by ABAQUS, FEA can predict crack, impact and crash events with material failure, as well as the dynamics, controls and joint behavior of a product.

Machine learning algorithms can be used to predict mechanical properties and material parameters, which is swift and uses less computational power than traditional FEA.

Khanolkar and Abraham used ABAQUS to perform high-quality FEA over hundreds of hours of work and thousands of data samples on simulated, structurally flawed mechanical parts. They then used these data samples to train machine learning algorithms to estimate the FEA results and maintain high accuracy in only a fraction of the time.

The team applied image colorization algorithms to material microstructure data, and repurposed algorithms that are typically used to add color to black-and-white photos.

In the original case, the algorithms take a black-and-white photo and return the red, green and blue channels for a new, colored version. In the team's work, the algorithm takes a simple image of the material microstructure and returns channels representing different types of potential failures in the product.

"Volumetric defects can affect the performance of a component in several ways, so it's key to understand this effect during the design process of a component," Basu said. "When defects may be unavoidable, like in additively manufactured components, this understanding can help decide how a design may be altered to make the presence of defects tolerable. This can be done by running different design scenarios and ultimately altering the design to achieve a more structurally responsible part. The insights resulting from our study are a first step toward such a framework."

For Khanolkar, the work helped him deeply understand machine learning techniques, providing direction for his current doctoral studies in mechanical and industrial engineering at the University of Toronto.

"Using intelligent technology to help people and empower their creativity and empathy during the design process is important," Khanolkar said. "These algorithms need lots of computational power and using artificial intelligence in this paper allows designers to be more creative without impacting production cost."
-end-


Penn State

Related Algorithms Articles from Brightsurf:

A multidisciplinary policy design to protect consumers from AI collusion
Legal scholars, computer scientists and economists must work together to prevent unlawful price-surging behaviors from artificial intelligence (AI) algorithms used by rivals in a competitive market, argue Emilio Calvano and colleagues in this Policy Forum.

Students develop tool to predict the carbon footprint of algorithms
Within the scientific community, it is estimated that artificial intelligence -- otherwise meant to serve as a means to effectively combat climate change -- will become one of the most egregious CO2 culprits should current trends continue.

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you
Scientists at Lawrence Berkeley National Laboratory have developed a new tool that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically.

Algorithms uncover cancers' hidden genetic losses and gains
Limitations in DNA sequencing technology make it difficult to detect some major mutations often linked to cancer, such as the loss or duplication of parts of chromosomes.

Managing data flow boosts cyber-physical system performance
Researchers have developed a suite of algorithms to improve the performance of cyber-physical systems - from autonomous vehicles to smart power grids - by balancing each component's need for data with how fast that data can be sent and received.

New theory hints at more efficient way to develop quantum algorithms
A new theory could bring a way to make quantum algorithm development less of an accidental process, say Purdue University scientists.

AI as good as the average radiologist in identifying breast cancer
Researchers at Karolinska Institutet and Karolinska University Hospital in Sweden have compared the ability of three different artificial intelligence (AI) algorithms to identify breast cancer based on previously taken mammograms.

Context reduces racial bias in hate speech detection algorithms
When it comes to accurately flagging hate speech on social media, context matters, says a new USC study aimed at reducing errors that could amplify racial bias.

Researchers discover algorithms and neural circuit mechanisms of escape responses
Prof. WEN Quan from School of Life Sciences, University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has proposed the algorithms and circuit mechanisms for the robust and flexible motor states of nematodes during escape responses.

Lightning fast algorithms can lighten the load of 3D hologram generation
Tokyo, Japan - Researchers from Tokyo Metropolitan University have developed a new way of calculating simple holograms for heads-up displays (HUDs) and near-eye displays (NEDs).

Read More: Algorithms News and Algorithms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.