Novel computed imaging technique uses blurry images to enhance view

January 21, 2007

CHAMPAIGN, Ill. -- Researchers at the University of Illinois at Urbana-Champaign have developed a novel computational image-forming technique for optical microscopy that can produce crisp, three-dimensional images from blurry, out-of-focus data.

Called Interferometric Synthetic Aperture Microscopy, ISAM can do for optical microscopy what magnetic resonance imaging did for nuclear magnetic resonance, and what computed tomography did for X-ray imaging, the scientists say.

"ISAM can perform high-speed, micron-scale, cross-sectional imaging without the need for time-consuming processing, sectioning and staining of resected tissue," said Stephen Boppart, a professor of electrical and computer engineering, of bioengineering, and of medicine at the U. of I., and corresponding author of a paper accepted for publication in the journal Nature Physics, and posted on its Web site.

Developed by postdoctoral research associate and lead author Tyler Ralston, research scientist Daniel Marks, electrical and computer engineering professor P. Scott Carney, and Boppart, the imaging technique utilizes a broad-spectrum light source and a spectral interferometer to obtain high-resolution, reconstructed images from the optical signals based on an understanding of the physics of light-scattering within the sample.

"ISAM has the potential to broadly impact real-time, three-dimensional microscopy and analysis in the fields of cell and tumor biology, as well as in clinical diagnosis where imaging is preferable to biopsy," said Boppart, who is also a physician and founding director of the Mills Breast Cancer Institute at Carle Foundation Hospital in Urbana, Ill.

While other methods of three-dimensional optical microscopy require the instrument's focal plane to be scanned through the region of interest, ISAM works by utilizing light from the out-of-focus image planes, Ralston said. "Although most of the image planes are blurry, ISAM descrambles the light to produce a fully focused, three-dimensional image."

ISAM effectively extends the region of the image that is in focus, using information that was discarded in the past.

"We have demonstrated that the discarded information can be computationally reconstructed to quickly create the desired image," Marks said. "We are now applying the technique to various microscopy methods used in biological imaging."

In their paper, the researchers demonstrate the usefulness of computed image reconstruction on both phantom tissue and on excised human breast-tumor tissue.

"ISAM can assist doctors by providing faster diagnostic information, and by facilitating the further development of image-guided surgery," Boppart said. "Using ISAM, it may be possible to perform micron-scale imaging over large volumes of tissue rather than resecting large volumes of tissue."

The versatile imaging technique can be applied to existing hardware with only minor modifications.
-end-
In addition to previously mentioned affiliations, Boppart, Carney, Marks and Ralston hold positions within the department of electrical and computer engineering and are affiliated with the U. of I.'s Beckman Institute for Advanced Science and Technology. Boppart also is affiliated with the university's Micro and Nanotechnology Laboratory and the Institute for Genomic Biology; Carney also is affiliated with the university's Coordinated Science Laboratory.

The National Institutes of Health, National Science Foundation, and the Beckman Institute funded the work.

University of Illinois at Urbana-Champaign

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.