Nav: Home

Dartmouth scientists discover method to potentially repair nerve damage

January 21, 2016

HANOVER, N.H. - Nerve damage from neurodegenerative disease and spinal cord injury has largely been considered irreversible, but Dartmouth researchers report progress in the effort to synthesize rare natural products that promote regeneration and growth of injured nerve cells.

The findings appear in the Journal of the American Chemical Society. A PDF is available on request.

Neurotrophins, or proteins that promote the development of neurons, have been investigated as potential therapeutic agents, but they have a variety of drawbacks. A group of small molecule natural products, however, possesses potent neurotrophic properties without some of the shortcomings of protein-based agents. Unfortunately, a source of suitable quantities of these substances to enable thorough medicinal exploration has yet to be identified. As such, the development of synthetic processes to generate molecules in this class (and related unnatural analogs) is critically important to establish science capable of fueling the discovery of therapeutic agents within the class. That said, many member of this natural product class boast very complex carbocyclic structures that have stood as substantial challenges to modern synthetic chemistry.

Now, Dartmouth researchers have discovered that one of their recently discovered chemical reactions is capable of delivering some of the most potent and rare members of this natural product class. Their pursuits resulted in the laboratory preparation of three neurotrophic natural products in the class and demonstrated the first application of their new carbocycle-forming reaction in natural product synthesis. In addition to these accomplishments, the researchers' study also led to the discovery of a new radical cascade reaction process that proved instrumental for completing their laboratory syntheses of these complex agents.

"Advances of this nature are critically important for defining a foundation of science necessary for advancing rare natural products as therapeutic agents," says co-author and principal investigator Glenn Micalizio, the New Hampshire Professor of Chemistry at Dartmouth College. "Simply stated, without a synthetic means to access such agents, development of therapeutics based on their structure would not be possible. While other syntheses of natural products within this class have recently been reported by others, our current achievement defines a unique synthesis pathway that could be employed to prepare synthetic analogs not easily accessed by others. Also, this marks the first successful application of our chemical method for hydrindane synthesis in the context of natural product synthesis."
-end-
The research was supported by the National Institutes of Health.

Professor Glenn Micalizio is available to comment at Glenn.C.Micalizio@dartmouth.edu.Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios

Dartmouth College

Related Spinal Cord Injury Articles:

Spinal cord injury patients face many serious health problems besides paralysis
Spinal cord patients are at higher risk for cardiovascular disease; pneumonia; life-threatening blood clots; bladder, bowel and sexual dysfunction; constipation and other gastrointestinal problems; pressure ulcers; and chronic pain, according to a report published in the journal Current Neurology and Neuroscience Reports.
A review on the therapeutic antibodies for spinal cord injury
Spinal cord injury (SCI) causes long-lasting damage in the spinal cord that leads to paraparesis, paraplegia, quadriplegia and other lifetime disabilities.
Health behaviors and management critical for spinal cord injury patients
U-M researcher is the co-editor of a two-part series of Topics in Spinal Cord Injury Rehabilitation focused on recent research studies about health behaviors and health management in individuals with spinal cord injury.
First clinical guidelines in Canada for pain following spinal cord injury
Researchers at Lawson Health Research Institute are the first in Canada to develop clinical practice guidelines for managing neuropathic pain with patients who have experienced a spinal cord injury.
Improving cell transplantation after spinal cord injury: When, where and how?
Spinal cord injuries are mostly caused by trauma, often incurred in road traffic or sporting incidents, often with devastating and irreversible consequences.
More Spinal Cord Injury News and Spinal Cord Injury Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...