Nav: Home

New 'moonshot' effort to understand the brain brings AI closer to reality

January 21, 2016

Harvard's John A. Paulson School of Engineering and Applied Sciences (SEAS), Center for Brain Science (CBS), and the Department of Molecular and Cellular Biology have been awarded over $28 million to develop advanced machine learning algorithms by pushing the frontiers of neuroscience.

The Intelligence Advanced Research Projects Activity (IARPA) funds large-scale research programs that address the most difficult challenges facing the intelligence community. Today, intelligence agencies are inundated with data - more than they are able to analyze in a reasonable amount of time. Humans, naturally good at recognizing patterns, can't keep pace. The pattern-recognition and learning abilities of machines, meanwhile, still pale in comparison to even the simplest mammalian brains. IARPA's challenge: figure out why brains are so good at learning, and use that information to design computer systems that can interpret, analyze, and learn information as successfully as humans.

To tackle this challenge, Harvard researchers will record activity in the brain's visual cortex in unprecedented detail, map its connections at a scale never before attempted, and reverse engineer the data to inspire better computer algorithms for learning.

"This is a moonshot challenge, akin to the Human Genome Project in scope," said project leader David Cox, assistant professor of molecular and cellular biology and computer science. "The scientific value of recording the activity of so many neurons and mapping their connections alone is enormous, but that is only the first half of the project. As we figure out the fundamental principles governing how the brain learns, it's not hard to imagine that we'll eventually be able to design computer systems that can match, or even outperform, humans."

These systems could be designed to do everything from detecting network invasions, to reading MRI images, to driving cars.

The research team tackling this challenge includes Jeff Lichtman, the Jeremy R. Knowles Professor of Molecular and Cellular Biology; Hanspeter Pfister, the An Wang Professor of Computer Science; Haim Sompolinsky, the William N. Skirball Professor of Neuroscience; and Ryan Adams, assistant professor of computer science; as well as collaborators from MIT, Notre Dame, New York University, University of Chicago, and Rockefeller University.

The multi-stage effort begins in Cox's lab, where rats will be trained to recognize various visual objects on a computer screen. As the animals are learning, Cox's team will record the activity of visual neurons using next-generation laser microscopes built for this project with collaborators at Rockefeller University, to see how brain activity changes as the animals learn. Then, a substantial portion of the rat's brain - one-cubic millimeter in size - will be sent down the hall to Lichtman's lab, where it will be diced into ultra-thin slices and imaged under the world's first multi-beam scanning electron microscope, housed in the Center for Brain Science.

"This is an amazing opportunity to see all the intricate details of a full piece of cerebral cortex," says Lichtman. "We are very excited to get started but have no illusions that this will be easy."

This difficult process will generate over a petabyte of data -- equivalent to about 1.6 million CDs worth of information. This vast trove of data will then be sent to Pfister, whose algorithms will reconstruct cell boundaries, synapses, and connections, and visualize them in three dimensions.

"This project is not only pushing the boundaries of brain science, it is also pushing the boundaries of what is possible in computer science," said Pfister. "We will reconstruct neural circuits at an unprecedented scale from petabytes of structural and functional data. This requires us to make new advances in data management, high-performance computing, computer vision, and network analysis."

If the work stopped here, its scientific impact would already be enormous -- but it doesn't. Once researchers know how visual cortex neurons are connected to each other in three dimensions, the next question is to figure out how the brain uses those connections to quickly process information and infer patterns from new stimuli. Today, one of the biggest challenges in computer science is the amount of training data that deep learning systems require. For example, in order to learn to recognize a car, a computer system needs to see hundreds of thousands of cars. But humans and other mammals don't need to see an object thousands of times to recognize it -- they only need to see it a few times.

In subsequent phases of the project, researchers at Harvard and their collaborators will build computer algorithms for learning and pattern recognition that are inspired and constrained by the connectomics data. These biologically-inspired computer algorithms will outperform current computer systems in their ability to recognize patterns and make inferences from limited data inputs. For example, this research could improve the performance of computer vision systems that can help robots see and navigate through new environments.

"We have a huge task ahead of us in this project, but at the end of the day, this research will help us understand what is special about our brains," Cox said. "One of the most exciting things about this project is that we are working on one of the great remaining achievements for human knowledge -- understanding how the brain works at a fundamental level."
-end-


Harvard John A. Paulson School of Engineering and Applied Sciences

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.