Nav: Home

NYU study explains why mistakes slow us down, but not necessarily for the better

January 21, 2016

Taking more time to make decisions after a mistake arises from a mixture of adaptive neural mechanisms that improve the accuracy and maladaptive mechanisms that reduce it, neuroscientists at New York University have found. Their study, which addresses a long-standing debate on the value of deliberation after errors in decision-making, also potentially offer insights into afflictions that impair judgments, such as Alzheimer's Disease and Attention Deficit Hyperactivity Disorder (ADHD).

"Our research reveals that a combination of changes in the brain slow us down after mistakes," explains Braden Purcell, an NYU post-doctoral fellow and a co-author of the study, which appears in the journal Neuron. "One gathers more information for the decision to prevent repeating the same mistake again. A second change reduces the quality of evidence we obtain, which decreases the likelihood we will make an accurate choice."

"In the end, these two processes cancel each other out, meaning that the deliberative approach we take to avoid repeating a mistake neither enhances nor diminishes the likelihood we'll repeat it," adds Roozbeh Kiani, an assistant professor in NYU's Center for Neural Science and the study's other co-author.

It's been long established that humans often slow down after mistakes, a phenomenon called post-error slowing--or PES. Less clear, however, are the neurological processes that occur under PES.

The NYU researchers sought to address this question through a series of experiments involving monkeys and humans. Both watched a field of noisy moving dots on a computer screen and reported their decision about the net direction of motion with their gaze. The experimenters controlled the difficulty of each decision with the proportion of dots that moved together in a single direction--for instance, a large proportion of dots moving to the right provided very strong evidence for a rightward choice, but a small proportion provided only weak evidence.

Humans and monkeys showed strikingly similar behavior. After errors, both slowed down the decision-making process, but the pattern of slowing depended on the difficulty of the decision. Slowing was maximum for more difficult decisions, suggesting longer accumulation of information. However, the overall accuracy of their choices did not change, indicating the quality of accumulated sensory information was lower.

Brain activity observed from the monkeys while they performed the task shed light on what was happening in the brain. Specifically, the researchers analyzed neural responses from a region of parietal cortex involved in accumulating information in their task. During decision making, these neurons represent evidence accumulation by increasing their activity over time at a rate that depends on the quality of evidence. Specifically, stronger motion leads to faster ramping and weaker motion leads to slower ramping.

After mistakes, the exact same motion stimulus produced neural activity that ramped more slowly--consistent with impaired quality of sensory evidence. Critically, however, the neurons showed significant increase in how much evidence was accumulated before a decision, preventing a reduction in the overall accuracy.

"Patients with ADHD or schizophrenia often do not slow down after errors and this has been interpreted as an impaired ability to monitor one's own behavior," explains Purcell. "Our results suggest that this absence of slowing may reflect much more fundamental changes in the underlying decision making brain networks. By better understanding the neural mechanisms at work after we make a mistake, we can begin to see how these afflictions impair this process."
-end-
The research was supported by a Sloan Research Fellowship, a NARSAD Young Investigator Grant, a Whitehall Research Grant, a National Institutes of Heath training grant (T32EY007136), and a post-doctoral fellowship from the Simons Collaboration on the Global Brain.

New York University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...