Nav: Home

New study challenges popular explanation for why a social insect becomes a worker or queen

January 21, 2016

The exquisite social hierarchy of insect colonies has long fascinated scientists. Take two eggs--both contain identical genetic material, but while one becomes a sterile worker, the other may develop into a queen that can reproduce. Workers perform brood care and other crucial tasks that keep the colony going, and typically live for a few weeks or months, whereas the egg-laying queens of some species live for years or decades.

What accounts for this dramatic divergence in the two insects' development? Within the last decade, many scientists have come to believe that DNA methylation--a mode of genetic regulation in which chemical tags turn genes on or off--is involved.

However, this explanation doesn't hold up to scrutiny, according to new findings from Rockefeller University published on January 21 in Current Biology. The researchers studied DNA methylation in clonal raider ants, Cerapachys biroi, which can switch between performing either brood care or egg-laying. When comparing methylation patterns in the brains of workers and queens, they found no overall differences.

"Discovering that there is no evidence to support methylation as a reason why two ants can behave so differently was, on the one hand, a little sobering," says senior author Daniel Kronauer, assistant professor and head of Rockefeller's Laboratory of Social Evolution and Behavior. "On the other hand, this finding could be really important for those who want to understand the evolution of social behavior and the function of DNA methylation in insects."

The case for methylation

Previous research had found methylation differences in the brains of insect queens and workers--making many scientists believe these differences cause the animals to take on different social roles. "It was a great story, and everyone ran with it," says Peter Oxley, a co-first author and postdoc in the lab.

But these previous studies looked at average levels of methylation within a sample of each insect type--taking, for instance, a group of worker ants, mixing their DNA together, and measuring the average amount of methylation among all their brains.

These experiments consistently found differences between worker and queen insects--but that test alone won't tell you if the difference is significant, explains Kronauer. The average amount of methylation present in one group will most likely differ from the average amount present in another group. To be meaningful, those differences must be consistent across multiple groups of workers and queens.

A lack of evidence

To take that extra step, members of Kronauer's team--including co-first author Romain Libbrecht, who at the time was a postdoc in Kronauer's lab and presently works at the University of Lausanne, in Switzerland--measured methylation levels from multiple samples of ants performing brood care or laying eggs. In these experiments, the distinctions found in previous research didn't hold up. The team did see differences in methylation between samples; however, these differences were equivalent between samples of workers, as well as between samples of queens. "It dawned on us that there was really nothing there," Kronauer says.

It's not that methylation doesn't do anything at all--in fact, the researchers found that it is primarily associated with genes that serve crucial functions for workers and queens alike, suggesting that DNA methylation might contribute to the stable expression of so-called household genes.

And, Kronauer notes, "we can't say for sure there is no difference in methylation between queens and workers. What our study does show is that the current evidence is inconclusive. That does not rule out the possibility that future studies with even higher resolution and more statistical power could find such differences."
-end-


Rockefeller University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...