Nav: Home

Columbia neuroscientists develop new tools to safely trace brain circuits

January 21, 2016

NEW YORK -- Scientists at Columbia University's Mortimer B. Zuckerman Mind Brain Behavior Institute have developed a new viral tool that dramatically expands scientists' ability to probe the activity and circuitry of brain cells, or neurons, in the mouse brain. These findings highlight an innovative feat of molecular engineering that allows the creation of a more complete map of the brain's cellular circuits and will help researchers on their way toward unraveling the mysteries of the brain.

This research was reported today in the journal Neuron.

"At its core, every sensation, thought and movement depends on how the brain's billions of neurons communicate through a complex system of circuits," said Thomas M. Jessell, PhD, the paper's co-senior author and a director of the Zuckerman Institute. "In this study, we developed a strain of rabies that greatly improves our ability to map these circuits, which can lend insight into how these circuits direct behavior -- in health and in disease," added Dr. Jessell, who is also the Claire Tow professor of neuroscience and of biochemistry and molecular biophysics at Columbia.

Because rabies only infects neurons, scientists have long worked to create a modified, safer version of the virus that can travel from cell to cell in the brain -- lighting a path as it goes -- providing a kind of visual map of connections. Researchers had struggled to find success, until eight years ago, when a team from the Salk Institute created an innovative new system.

Using the rabies strain normally reserved for inoculations, Salk researchers led by Edward Callaway found a way to control the virus' spread by manually tweaking its ability to jump from cell to cell. This advance, while revolutionary, came with drawbacks. As an inoculation strain, this older rabies virus had evolved to kill neurons while sparing the organism. This caused neurons to die just a few days after infection -- too little time to construct an adequate map of a brain circuit.

"It was like trying to draw a detailed map of New York City but you only had a minute to do so--so you were left with a woefully incomplete picture," said Thomas Reardon, the paper's co-first author and a doctoral candidate at Columbia University Medical Center (CUMC). "So for this study, we looked to a different version of the virus, which would allow neurons to live much longer."

Working with acclaimed virologist Matthias Schnell, PhD, and his team at Thomas Jefferson University, the scientists took this strain of rabies and essentially neutered the virus so that it would still spread but without killing the organism. Using this new strain, neurons in the mouse brain lived for more than a month, allowing a greater window of time than ever before in which to map the circuit. The team could then direct the viral infection just as Salk scientists had done but without risking premature cell death.

"While this strain is specific to the mouse brain, the applications for this advance are far-reaching," said Attila Losonczy, MD, PhD, an assistant professor of neuroscience at CUMC, a principal investigator at the Zuckerman Institute and a co-senior author of this study. "For example, scientists could engineer a molecular payload, attach it to the modified rabies virus, and control specific neurons or groups of neurons"

"Ideally, we envision a strain of rabies virus that would be so safe and so malleable that we can enlist it to fight diseases of the brain," said Andrew Murray, PhD, a postdoctoral fellow at CUMC and the co-first author of the paper. "It is our hope that scientists can improve upon our strain and transform rabies virus into a vector to fight disease."

"Our study also speaks to a broader theme in science: that the most revolutionary scientific tools do not originate in the lab, but instead come from nature itself," added Reardon. "Evolution has already invented the rabies virus--all we had to do was to co-opt it."
-end-
This paper is titled: "Rabies virus CVS-N2c?G strain enhances retrograde synaptic transfer and neuronal viability." Additional contributors include Gergely Turi, PhD, Christoph Wirblich and Katherine Croce.

This research was supported by the McKnight Foundation, the Brain and Behavior Research Foundation (NARSAD), the National Institutes of Health (NS0332245), Project ALS and the Howard Hughes Medical Institute.

The authors report no financial or other conflicts of interest.

About the Zuckerman Institute

Grasping the implications for the health of the brain, mind, and nervous system is perhaps the greatest challenge facing 21st-century science. To lead the way, Columbia University has established a comprehensive institute for the pursuit of interdisciplinary and collaborative research in brain science. Building on the University's distinguished history in the study and treatment of the brain, the Mortimer B. Zuckerman Mind Brain Behavior Institute will bring together 1,000 scientists in a single state-of-the-art engine of discovery -- based at the Jerome L. Greene Science Center -- now rising on the University's new Manhattanville campus. It will form the hub of an even larger collaborative network of academics stretching across all disciplines -- including the arts, economics, law, and medicine -- and campuses, from Columbia University Medical Center to Morningside Heights and beyond. To learn more, visit zuckermaninstitute.columbia.edu.

The Zuckerman Institute at Columbia University

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.