Nav: Home

Cells from cow knee joints used to grow new cartilage tissue in laboratory

January 21, 2016

In an effort to develop a method for cartilage tissue engineering, researchers at Umeå University in Sweden successfully used cartilage cells from cow knee joints. By creating a successful method with conditions conducive to growing healthy cartilage tissue, the findings could help lead to a new treatment cure for osteoarthritis using stem cell-based tissue engineering. This is according to a doctoral dissertation at Umeå University.

Articular cartilage is tissue that is found on all the joint surfaces in the body. Since the tissue is not supplied with any blood vessels, it has a low self-repair capacity. Joint injuries and wear often damage cartilage tissue, leading to a condition called osteoarthritis. In 2012 in Sweden, 26.6 percent of all people age 45 years or older were diagnosed with osteoarthritis. In serious cases, osteoarthritis can mean the loss of practically the entire cartilage tissue in the joint. While the condition causes pain and immobility for the individual, it also burdens society with accumulated medical costs.

"There is currently no good cure for osteoarthritis," says Janne Ylärinne, doctoral student at the Department of Integrative Medical Biology and author of the doctoral dissertation. "Surgical treatments may help when the damage to the cartilage is relatively minor, whereas joint replacement surgery is the only available solution for people with larger cartilage damage. However, artificial joints only last for a couple of decades, making the surgery unsuitable for young persons. So we need a more permanent solution."

Tissue engineering provides a possible solution to osteoarthritis. In their experiments, the researchers at Umeå University made findings that provide useful information for efforts to develop new methods to produce cartilage-like "neotissues" in a laboratory environment. In the engineering process, the cells, the signaling molecules and the scaffold, i.e. artificial support material, are combined to regenerate tissue at the damaged site in the joint. The process is difficult and much of what constitutes suitable growth factors and a mechanical loading environment is still unknown. Today, there is a huge variety of available synthetic and natural scaffolds. It is also unclear whether stem cells or primary cells are best suited.

Using primary bovine chondrocytes, i.e. cartilage cells from cows, the researchers improved methods to grow cartilage tissue in a laboratory environment, producing tissue similar to tissue normally present in the human joints. In future, these results may help the development of neocartilage production for actual cartilage repair. For this, stem cells could be grown to provide unlimited amount of material for tissue engineering. However, more research is needed to improve the tissue quality and make it more structurally similar to the hyaline cartilage found in the human body.
-end-
Janne Ylärinne comes from Sonkajärvi in Finland.

Umea University

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...