Secret to sepsis may lie in rare cell

January 21, 2019

In a paper published in Nature Immunology, scientists from Seattle Children's Research Institute reveal how a rare group of white blood cells called basophils play an important role in the immune response to a bacterial infection, preventing the development of sepsis. Researchers say their findings could lead to better ways to prevent the dangerous immune response that strikes more than 30 million people worldwide every year.

"Sepsis is the number one killer of children globally, yet little is known about what goes wrong in an individual's immune system to cause sepsis as it fights off an infection," said Dr. Adrian Piliponsky, a principal investigator in the research institute's Center for Immunity and Immunotherapies. "Without this information, it's hard to predict who will develop sepsis or explain why sepsis causes a range of immune responses in different individuals."

Learning from the early stages of infection

To better understand the changes the immune system undergoes as an infection progresses into sepsis, a Seattle Children's team led by Piliponsky, along with collaborators from the Stanford University School of Medicine and other international labs, traced the immune response back to the early stages of infection.

They focused on a particular group of white blood cells called basophils known to help initiate an immune response to an infection.

"As one of the rarest cell types in the body, basophils make up less than 1% of a person's white blood cells," said Piliponsky, an associate professor of pediatrics at the University of Washington School of Medicine. "Scientists have long suspected that basophils can enhance the immune defense against a bacterial infection although there was no scientific proof of this role prior to our study."

Basophils play key role in preventing sepsis

To examine the basophils' contribution to the immune response, the researchers used a model of bacterial infection and sepsis that closely resembles the progression and characteristics of human sepsis in genetically-modified mice.

Their studies showed that basophils were one of the first types of immune cell to appear at the infection site. The presence of basophils not only enhanced inflammation at the early stages of an immune response to infection and improved survival in mice, but did this in part by releasing a protein known as tumor necrosis factor (TNF).

As a major player in the immune response to an infection, TNF sends the signal to other cells causing them to switch into high gear and generate the inflammatory response that is vital to protecting and healing damaged tissue. Its presence in this research adds to mounting evidence that basophil-derived TNF plays a major role in the first stages of the immune system's defense against an infection, and indicates that a reduced basophil presence or a deficiency in factors regulated by basophils can lead to sepsis.

"These findings show that basophils, despite their low numbers, can trigger a cascade of events that both helps them to initiate an immune response against infection and enhances the effectiveness of this response," wrote Piliponsky and his co-authors in the paper. "Together, these findings provide novel insights into how basophils, and basophil-derived TNF, might have key roles in the early stages following bacterial infections and in resisting the progression of such infections to sepsis."

Piliponsky believes these studies lay the groundwork for future projects. Research focused on certain aspects of basophil function could offer better ways to determine an individual's risk for sepsis or prevent the dysregulated immune response that can lead to sepsis.
-end-


Seattle Children's

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.