Nav: Home

Fossilized slime of 100-million-year-old hagfish shakes up vertebrate family tree

January 21, 2019

Paleontologists at the University of Chicago have discovered the first detailed fossil of a hagfish, the slimy, eel-like carrion feeders of the ocean. The 100-million-year-old fossil helps answer questions about when these ancient, jawless fish branched off the evolutionary tree from the lineage that gave rise to modern-day jawed vertebrates, including bony fish and humans.

The fossil, named Tethymyxine tapirostrum,is a 12-inch long fish embedded in a slab of Cretaceous period limestone from Lebanon. It fills a 100-million-year gap in the fossil record and shows that hagfish are more closely related to the blood-sucking lamprey than to other fishes. This means that both hagfish and lampreys evolved their eel-like body shape and strange feeding systems after they branched off from the rest of the vertebrate line of ancestry about 500 million years ago.

"This is a major reorganization of the family tree of all fish and their descendants. This allows us to put an evolutionary date on unique traits that set hagfish apart from all other animals," said Tetsuto Miyashita, PhD, a Chicago Fellow in the Department of Organismal Biology and Anatomy at UChicago who led the research. The findings are published this week in the Proceedings of the National Academy of Sciences.

The slimy dead giveaway

Modern-day hagfish are known for their bizarre, nightmarish appearance and unique defense mechanism. They don't have eyes, or jaws or teeth to bite with, but instead use a spiky tongue-like apparatus to rasp flesh off dead fish and whales at the bottom of the ocean. When harassed, they can instantly turn the water around them into a cloud of slime, clogging the gills of would-be predators.

This ability to produce slime is what gave away the Tethymyxine fossil. Miyashita used an imaging technology called synchrotron scanning at Stanford University to identify chemical traces of soft tissue that were left behind in the limestone when the hagfish fossilized. These soft tissues are rarely preserved, which is why there are so few examples of ancient hagfish relatives to study.

The scanning picked up a signal for keratin, the same material that makes up fingernails in humans. Keratin, as it turns out, is a crucial part of what makes the hagfish slime defense so effective. Hagfish have a series of glands along their bodies that produce tiny packets of tightly-coiled keratin fibers, lubricated by mucus-y goo. When these packets hit seawater, the fibers explode and trap the water within, turning everything into shark-choking slop. The fibers are so strong that when dried out they resemble silk threads; they're even being studied as possible biosynthetic fibers to make clothes and other materials.

Miyashita and his colleagues found more than a hundred concentrations of keratin along the body of the fossil, meaning that the ancient hagfish probably evolved its slime defense when the seas included fearsome predators such as plesiosaurs and ichthyosaurs that we no longer see today.

"We now have a fossil that can push back the origin of the hagfish-like body plan by hundreds of millions of years," Miyashita said. "Now, the next question is how this changes our view of the relationships between all these early fish lineages."

Shaking up the vertebrate family tree

Features of the new fossil help place hagfish and their relatives on the vertebrate family tree. In the past, scientists have disagreed about where they belonged, depending on how they tackled the question. Those who rely on fossil evidence alone tend to conclude that hagfish are so primitive that they are not even vertebrates. This implies that all fishes and their vertebrate descendants had a common ancestor that -- more or less -- looked like a hagfish.

But those who work with genetic data argue that hagfish and lampreys are more closely related to each other. This suggests that modern hagfish and lampreys are the odd ones out in the family tree of vertebrates. In that case, the primitive appearance of hagfish and lampreys is deceptive, and the common ancestor of all vertebrates was probably something more conventionally fish-like.

Miyashita's work reconciles these two approaches, using physical evidence of the animal's anatomy from the fossil to come to the same conclusion as the geneticists: that the hagfish and lampreys should be grouped separately from the rest of fishes.

"In a sense, this resets the agenda of how we understand these animals," said Michael Coates, PhD, professor of organismal biology and anatomy at UChicago and a co-author of the new study. "Now we have this important corroboration that they are a group apart. Although they're still part of vertebrate biodiversity, we now have to look at hagfish and lampreys more carefully, and recognize their apparent primitiveness as a specialized condition.

Paleontologists have increasingly used sophisticated imaging techniques in the past few years, but Miyashita's research is one of a handful so far to use synchrotron scanning to identify chemical elements in a fossil. While it was crucial to detect anatomical structures in the hagfish fossil, he believes it can also be a useful tool to help scientists detect paint or glue used to embellish a fossil or even outright forge a specimen. Any attempt to spice up a fossil specimen leaves chemical fingerprints that light up like holiday decorations in a synchrotron scan.

"I'm impressed with what Tetsuto has marshaled here," Coates said. "He's maxed out all the different techniques and approaches that can be applied to this fossil to extract information from it, to understand it and to check it thoroughly."
-end-
The study, "A Hagfish from the Cretaceous Tethys Sea and a Reconciliation of the Morphological-Molecular Conflict in Early Vertebrate Phylogeny," was supported by National Science Foundation and the National Science and Engineering Research Council (Canada). Additional authors include Robert Farrar and Peter Larson from the Black Hills Institute of Geological Research; Phillip Manning and Roy Wogelius from the University of Manchester; Nicholas Edwards and Uwe Bergmann from the SLAC National Accelerator Laboratory; Jennifer Anné from the Children's Museum of Indianapolis; and Richard Palmer and Philip Currie from the University of Alberta.

University of Chicago Medical Center

Related Fossil Articles:

Rare lizard fossil preserved in amber
The tiny forefoot of a lizard of the genus Anolis was trapped in amber about 15 to 20 million years ago.
Reconstructing the diet of fossil vertebrates
Paleodietary studies of the fossil record are impeded by a lack of reliable and unequivocal tracers.
Fossil is the oldest-known scorpion
Scientists studying fossils collected 35 years ago have identified them as the oldest-known scorpion species, a prehistoric animal from about 437 million years ago.
Fossil fish gives new insights into the evolution
An international research team led by Giuseppe Marramà from the Institute of Paleontology of the University of Vienna discovered a new and well-preserved fossil stingray with an exceptional anatomy, which greatly differs from living species.
What color were fossil animals?
Dr. Michael Pittman of the Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong led an international study with his PhD student Mr.
New Cretaceous fossil sheds light on avian reproduction
A team of scientists led by Alida Bailleul and Jingmai O'Connor from the Institute of Vertebrate Paleontology and Paleoanthropology of the Chinese Academy of Sciences reported the first fossil bird ever found with an egg preserved inside its body.
Fossil deposit is much richer than expected
Near the Dutch town of Winterswijk is an Eldorado for fossil lovers.
Researchers add surprising finds to the fossil record
A newly discovered fossil suggests that large, flowering trees grew in North America by the Turonian age, showing that these large trees were part of the forest canopies there nearly 15 million years earlier than previously thought.
Chinese Cretaceous fossil highlights avian evolution
A newly identified extinct bird species from a 127-million-year-old fossil deposit in northeastern China provides new information about avian development during the early evolution of flight.
Parasites discovered in fossil fly pupae
Parasitic wasps existed as early as several million years ago.
More Fossil News and Fossil Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.