Nav: Home

New drug resistance process found in bacteria

January 21, 2019

A team of researchers has discovered a new process capable of generating resistance to synthetic antibacterial drugs within bacterial populations long before they are put to clinical use.

The research was led by Jordi Barbé, researcher at the Molecular Microbiology Group of the Universitat Autònoma de Barcelona (UAB), and by Ivan Erill from the Department of Biology at the University of Maryland, Baltimore County (UMBC). The findings were recently published in the journal Frontiers in Microbiology.

Researchers analysed the large volume of bacterial genomes available with the aim of identifying the origin of mobile genetic elements carriers of a resistance to sulfonamides frequently detected in the superbacteria found in hospitals.

Through a comparative analysis of sequences and phylogenetic techniques, the researchers were able to establish that sulfonamide-resistant genes appeared in two ground bacteria families (Rhodobiaceae and Leptospiraceae) over 600 million years ago thanks to a mutation in the drug's target gene. The genes identified mobilised rapidly and transferred to other bacteria as a result of the widespread use of sulfonamide for agricultural and clinical use in the mid-20th century.

According to researchers, the description of a process capable of originating antibacterial drug resistance before being invented and in the absence of natural analoguous substances which could favour the appearance of a resistance gene has a great effect on the development and praxis of future drugs.

"The discovery confirms the need to use a combined multidrug treatment capable of attacking divers resistance mechanisms within the hospital environment. In addition, given that the origin of these resistance genes have been found in the bacteria residing in the subsoil and aquifers alerts us of the need to reduce the current agricultural use of antibacterials", Ivan Erill points out.

"Our hypothesis is that the enormous genetic variability of bacteria has favoured the mutation of resistance genes which we identified without the need to be selectively pressured by sulfonamide or any other similar substance found in nature", explains Jordi Barbé. "In this sense, the study highlights the fact that the vast bacteria pangenome may give way to a rapid selection and mobilisation of already existing resistances when faced with the introduction of a newly synthesised drug", he concludes.

An Unexpected Resistance

Synthetic antibacterial drugs such as sulfonamide are created using chemical substances fully designed in laboratories, while antibiotics are based on substances generated by microorganisms found in nature, such as viruses, fungi, yeast or bacteria which survive by competing amongst each others.

Antibiotic-resistant genes can be found in nature even before these drugs are clinically used, because it is the microorganisms themselves generating them to contrast antibacterial substances of their competitors. However, it is not something expected as a response to synthetic drugs and according to the researchers, in no case have they seen a process like the one described in the study, in which they identified a mutation of the drug's target gene.

Sulphonamide was the first synthetic antibacterial used in the clinical environment during the first half of the past century. It is currently used in first-line clinical interventions, together with other drugs and particularly in developing countries. It is also widely used as a preventive treatment in agriculture.
-end-


Universitat Autonoma de Barcelona

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#520 A Closer Look at Objectivism
This week we broach the topic of Objectivism. We'll be speaking with Keith Lockitch, senior fellow at the Ayn Rand Institute, about the philosophy of Objectivism as it's taught through Ayn Rand's writings. Then we'll speak with Denise Cummins, cognitive scientist, author and fellow at the Association for Psychological Science, about the impact of Objectivist ideology on society. Related links: This is what happens when you take Ayn Rand seriously Another Critic Who Doesn’t Care What Rand Thought or Why She Thought It, Only That She’s Wrong Quote is from "A Companion to Ayn Rand"