Nav: Home

Global study finds predators are most likely to be lost when habitats are converted for human use

January 21, 2020

A first of its kind, global study on the impacts of human land-use on different groups of animals has found that predators, especially small invertebrates like spiders and ladybirds, are the most likely to be lost when natural habitats are converted to agricultural land or towns and cities. The findings are published in the British Ecological Society journal Functional Ecology.

Small ectotherms (cold blooded animals such as invertebrates, reptiles and amphibians), large endotherms (mammals and birds) and fungivores (animals that eat fungi) were also disproportionally affected, with reductions in abundance of 25-50% compared to natural habitats.

The researchers analysed over one million records of animal abundance at sites ranging from primary forest to intensively managed farmland and cities. The data represented over 25,000 species across 80 countries. Species were grouped by size, whether they were warm or cold blooded and by what they eat. Species ranged from the oribatid mite weighing only 2x10-6g, to an African elephant weighing 3,825kg.

Dr. Tim Newbold at UCL (University College London) and lead author of the research said: "Normally when we think of predators, we think of big animals like lions or tigers. These large predators did not decline as much as we expected with habitat loss, which we think may be because they have already declined because of human actions in the past (such as hunting). We find small predators - such as spiders and ladybirds - to show the biggest declines."

The results indicate that the world's ecosystems are being restructured with disproportionate losses at the highest trophic levels (top of the food chain). Knowing how different animal groups are impacted by changing land-use could help us better understand how these ecosystems function and the consequences of biodiversity change.

"We know that different types of animals play important roles within the environment - for example, predators control populations of other animals. If some types of animals decline a lot when we lose natural habitats, then they will no longer fulfil these important roles." said Dr. Tim Newbold.

The conversion of land to human use is associated with the removal of large amounts of natural plant biomass, usually to give space for livestock and crops. The limiting of the quantity and diversity of resources available at this level potentially explains the disproportionate reductions in predators seen in this study. As you go up the trophic levels (food chain), resource limitations are compounded through a process known as bottom-up resource limitation.

The study is part of the PREDICTS project which explores how biodiversity responds to human pressures. The researchers analysed 1,184,543 records of animal abundance in the PREDICTS database, gathered from 460 published scientific studies. This database included all major terrestrial vertebrate taxa and many invertebrate taxa (25,166 species, 1.8% of described animals).

Species were sorted into functional groups defined by their size, trophic level (what they consumed) and thermal regulation strategy (warm or cold blooded). The type of land-use at each of the 13,676 sample sites was classified from the description of the habitat in the source publication. The six broad categories were primary vegetation, secondary vegetation, plantation forest, cropland, pasture and urban. Three levels of human use intensity were also recorded: minimal, light and intense.

Dr. Tim Newbold explained that studies like this are limited by the available data: "As with all global studies, we are limited in the information that is available to us about where animals are found and what they eat. We were able to get information for more animals than ever before, but this was still only around 1 out of every 100 animals known to science."

The researchers also observed biases in the spread of data across types of land-use, animal groups and parts of the world. "Natural habitats and agricultural areas have been studied more than towns and cities. We think this is because ecologists tend to find these environments more interesting than urban areas as there tend to be more animals in them." said Dr. Tim Newbold. The researchers also found that large parts of Asia were under sampled for several functional groups. Birds were also better represented among vertebrates and insects better represented among invertebrates.

The researchers are now interested in exploring how groups of animals that play particularly important roles for agriculture, such as pollinating or controlling crop pests, are affected by habitat loss.
-end-


British Ecological Society

Related Predators Articles:

To warn or to hide from predators?: New computer simulation provides answers
Some toxic animals are bright to warn predators from attacking them, and some hide the warning colors, showing them only at the very last moment when they are about to be attacked.
Dragonflies are efficient predators
A study led by the University of Turku, Finland, has found that small, fiercely predatory damselflies catch and eat hundreds of thousands of insects during a single summer -- in an area surrounding just a single pond.
Predators to spare
In 2014, a disease of epidemic proportions gripped the West Coast of the US.
Red-winged blackbird nestlings go silent when predators are near
If you're a predator that eats baby birds -- say, an American crow -- eavesdropping on the begging calls of nestlings can be an easy way to find your next meal.
A decade after the predators have gone, Galapagos Island finches are still being spooked
On some of the Galapagos Islands where human-introduced predators of Darwin's finches were eradicated over a decade ago, the finches are still acting as though they are in danger, according to research published today in the Journal of Animal Ecology.
Fear of predators causes PTSD-like changes in brains of wild animals
A new study by Western University demonstrates that the fear predators inspire can leave long-lasting traces in the neural circuitry of wild animals and induce enduringly fearful behaviour, comparable to effects seen in PTSD research.
Fear of predators increases risk of illness
Predators are not only a deadly threat to many animals, they also affect potential prey negatively simply by being nearby.
New study questions effects of reintroducing top predators
There's little evidence that reintroducing top predators to ecosystems will return them to the conditions that existed before they were wiped out, according to new research.
'Seeing' tails help sea snakes avoid predators
New research has revealed the fascinating adaptation of some Australian sea snakes that helps protect their vulnerable paddle-shaped tails from predators.
How water fleas detect predators
Water fleas of the genus Daphnia detect via chemical substances if their predators, namely Chaoborus larvae, are hunting in their vicinity.
More Predators News and Predators Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.