Traumatic brain injury impairs hormone production, disrupting sleep, cognition, memory

January 21, 2020

GALVESTON, Texas -More than 2.5 million people in the United States alone experience a traumatic brain injury, or TBI, each year. Some of these people are plagued by a seemingly unrelated cascade of health issues for years after their head injury, including fatigue, depression, anxiety, memory issues, and sleep disturbances.

A collaborative team, led by Dr. Randall Urban, The University of Texas Medical Branch at Galveston's Chief Research Officer and Professor of Endocrinology, has spent the past 20 years investigating this post-TBI syndrome. The team has learned more about how a TBI triggers a reduction in growth hormone secretion and why most TBI patients improve after growth hormone replacement treatment.

The studies led to the definition of the syndrome as brain injury associated fatigue and altered cognition, or BIAFAC, as recently described in a commentary published by Drs Urban and Brent Masel, UTMB Professor of Neurology, in the Journal of Neurotrauma. Detailed information on the team's two most recent advances also in the Journal of Neurotrauma.

The team's work on brain injuries began in the late 1990's when Galveston philanthropist Robert Moody asked the team whether TBI caused dysfunction of the hormones made by the brain's pituitary gland and funded research for the study. His son, Russell, had suffered a serious TBI during a car accident and was seeking ways to improve the life of his son and others living with brain injuries.

The team has been building on the discovery that TBI triggers a long-term reduction in growth hormone, or GH, secretion that is linked with BIAFAC. Most TBI patients experience dramatic symptom relief with GH replacement therapy, but the symptoms return if the treatment stops. The researchers are trying to better understand BIAFAC and exactly how and why GH replacement works so well in order to develop new interventions.

"We already knew that even mild TBI triggers both short- and long-term changes to functional connections in the brain," said Urban. "GH administration has been extensively linked with both protection and repair of the brain following damage or disease, however we didn't know much about the particular mechanisms and pathways involved."

They examined 18 people with a history of mild TBI and inadequate GH secretion. The subjects received GH replacement in a year-long, double-blind, placebo-controlled study and were assessed for changes in physical performance, resting metabolic rate, fatigue, sleep quality, and mood. Functional magnetic resonance imaging was also used throughout the year to assess changes in brain structure and functional connections.

The study showed that GH replacement was linked with increased lean body mass and decreased fat mass as well as reduced fatigue, anxiety, depression and sleep disturbance. It was also found, for the first time, that these improvements were associated with better communications among brain networks that have been previously associated with GH deficiency. They also noted increases in both grey and white matter in frontal brain regions, the "core communications center of the brain," that could be related to cognitive improvements.

"We noticed that TBI patients had altered amino acid and hormonal profiles suggesting chronic intestinal inflammation, so we recently completed a trial to investigate the role of the gut-brain axis in the long-lasting effects of TBI," said Urban. "We compared the fecal microbes of 22 moderate/severe TBI patients residing in a long-term care facility with 18 healthy age-matched control subjects, identifying disruptions of intestinal metabolism and changes in nutrient utilization in TBI patients that could explain the reduced growth hormone function."

The results suggest that the people with TBI-related fatigue and altered cognition also have different fecal bacterial communities than the control group. Urban said that the findings suggest that supplementing or replacing the dysbiotic intestinal communities may help to ease the symptoms experienced after TBI.

"These two studies further characterize BIAFAC and act as a springboard for new treatment options," said Urban. "We hope that the publications will focus the collective wisdom of the research community to better understand and treat this syndrome, providing hope for many. Because these symptoms can manifest months to years after the initial injury and as this cluster of symptoms hasn't been previously grouped together, it often goes unidentified in the medical community."
-end-
The work was supported by the Moody Endowment, the TIRR Foundation, Moody Neurorehabilitation Institute, the National Institutes of Health, Pfizer, the Centre for Neuroskills and the Baylor Alkek Center.

Please refer to the Journal of Neurotrauma papers for a complete listing of the study authors.

University of Texas Medical Branch at Galveston

Related Traumatic Brain Injury Articles from Brightsurf:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.

Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.

Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.

Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.

Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).

Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.

Read More: Traumatic Brain Injury News and Traumatic Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.