Light-up wheels: Unique organic light-emitting molecular emitters

January 21, 2020

Osaka, Japan - A team including researchers from Osaka University has produced a new molecular emitter for organic light-emitting diodes (OLEDs). Using rational chemical design with U-shaped synthetic building blocks, the scientists were able to arrange the electron donors and acceptors into a large ring called a "macrocycle." The wheel-shaped molecule could potentially be used not only in OLEDs but also in tiny, energy-efficient chemical sensors in the future.

Many modern televisions and smartphones use OLEDs to display pictures and videos. These devices can efficiently convert electricity into light because they are made from carbon-based molecules containing alternating single and double chemical bonds, an arrangement called π-conjugation. This configuration allows electrons to become highly mobile because they are effectively "delocalized" over large regions of the molecules, which tend to be long linear chains. When a molecule is electronically excited by external energy and then relaxes to the original state, the excess energy can be converted directly into light. By adding the right chemical functional groups to the molecule, a whole range of properties, such as emission colors and energy conversion efficiencies, can be fine-tuned.

Now, a research team led by Professor Youhei Takeda at Osaka University has designed and synthesized an efficient macrocyclic OLED emitter in which donor and acceptor regions alternate in a permanently bonded ring structure. They found that OLED devices fabricated with the new macrocyclic emitter show much better efficiencies compared with linear molecular emitters (which act like open forms of the macrocycles), due to the fact that the macrocycles can more efficiently harvest ambient heat energy in a process called "thermally activated delayed fluorescence."

"Linear π-conjugated oligomers and polymers already play crucial roles in materials science, but we found ring-shaped macrocycles to be even better for many applications," says first author Saika Izumi. The team was able to create two different conformations, "saddle" and "helical", with different packing arrangements and emission colors. The nanoscale cavities inside the rings can be designed to interact with target molecules to create efficient and selective chemical sensors.

"Macrocycles can be arranged into highly-ordered 2D- and 3D-molecular assemblies that are much more difficult to achieve with linear analogs," explains senior author Youhei Takeda.

Possible future applications include the detection of chemical substances, such as water molecules or gases, based on the modulation of light emitted when the target substance is present inside the cavity.
The article, "Thermally activated delayed fluorescent donor-acceptor-donor-acceptor π-conjugated macrocycle for organic light-emitting diodes," was published in the Journal of the American Chemical Society at DOI:

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.


Osaka University

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to