Nav: Home

Insecticides are becoming more toxic to honey bees

January 21, 2020

UNIVERSITY PARK, Pa. -- During the past 20 years, insecticides applied to U.S. agricultural landscapes have become significantly more toxic -- over 120-fold in some midwestern states -- to honey bees when ingested, according to a team of researchers, who identified rising neonicotinoid seed treatments in corn and soy as the primary driver of this change. The study is the first to characterize the geographic patterns of insecticide toxicity to bees and reveal specific areas of the country where mitigation and conservation efforts could be focused.

According to Christina Grozinger, Distinguished Professor of Entomology and director of the Center for Pollinator Research, Penn State, this toxicity has increased during the same period in which widespread decline in populations of pollinators and other insects have been documented.

"Insecticides are important for managing insects that damage crops, but they can also affect other insect species, such as bees and other pollinators, in the surrounding landscape," she said. "It is problematic that there is such a dramatic increase in the total insecticide toxicity at a time when there is also so much concern about declines in populations of pollinating insects, which also play a very critical role in agricultural production."

The researchers, led by Maggie Douglas, assistant professor of environmental studies, Dickinson College, and former postdoctoral fellow, Penn State, integrated several public databases -- including insecticide use data from the U.S. Geological Survey, toxicity data from the Environmental Protection Agency, and crop acreage data from the U.S. Department of Agriculture -- to generate county-level annual estimates of honey bee "toxic load" for insecticides applied between 1997 and 2012. The team defined toxic load as the number of lethal doses to bees from all insecticides applied to cropland in each county.

The researchers generated separate estimates for contact-based toxic loads, such as when a bee is sprayed directly, and oral-based toxic loads, such as when a bee ingests the pollen or nectar of a plant that has recently been treated. They generated a map of predicted insecticide toxic load at the county level. Their results appear today (Jan. 21) in Scientific Reports.

The team found that the pounds of insecticides applied decreased in most counties from 1997 to 2012, while contact-based bee toxic load remained relatively steady. In contrast, oral-based bee toxic load increased by 9-fold, on average, across the U.S. This pattern varied by region, with the greatest increase -- 121-fold -- seen in the Heartland, which the U.S. Department of Agriculture defines as all of Iowa, Illinois and Indiana; most of Missouri; and part of Minnesota, Ohio, Kentucky, Nebraska and South Dakota. The Northern Great Plains had the second highest increase at 53-fold. This region includes all of North Dakota and part of South Dakota, Nebraska, Colorado, Wyoming, Montana and Minnesota.

"This dramatic increase in oral-based toxic load is connected to a shift toward widespread use of neonicotinoid insecticides, which are unusually toxic to bees when they are ingested," said Douglas.

The most widely used family of insecticides in the world, neonicotinoids are commonly used as seed coatings in crops, such as corn and soybean. Some of the insecticide is taken up by the growing plants and distributed throughout their tissues, while the rest is lost to the environment.

"Several studies have shown that these seed treatments have negligible benefits for most crops in most regions," said Grozinger. "Unfortunately, growers often don't have the option to purchase seeds without these treatments; they don't have choices in how to manage their crops."

The researchers suggest that the common method of evaluating insecticide use trends in terms of pounds of insecticides applied does not give an accurate picture of environmental impact.

"The indicator we use -- bee toxic load -- can be considered as an alternative indicator in cases where impacts to bees and other non-target insects is a concern," said Douglas. "This is particularly relevant given that many states have recently developed 'Pollinator Protection Plans' to monitor and address pollinator declines. Ultimately, our work helps to identify geographic areas where in-depth risk assessment and insecticide mitigation and conservation efforts could be focused."

"It is important to note that the calculation of bee toxic load provides information about the total toxicity of insecticides applied to a landscape," said Grozinger. "It does not calculate how much of that insecticide actually comes in contact with bees, or how long the insecticide lasts before it is broken down. Future studies are needed to determine how toxic load associates with changes in populations of bees and other insects."

This research is part of a larger project to investigate the various stressors impacting pollinator populations across the United States. One tool created within this research project is Beescape, which allows users to explore the stressors affecting bees in their own communities.
-end-
Other authors on the paper include Douglas Sponsler, postdoctoral scholar, Penn State, and Eric Lonsdorf, lead scientist, Institute on the Environment, University of Minnesota.

The research was funded by the National Science Foundation, the U.S. Department of Agriculture National Institute of Food and Agriculture's Agriculture and Food Research Initiative, the Foundation for Food and Agricultural Research and the U.S. Department of Agriculture's Economic Research Service.

EDITORS: Christina Grozinger is available at cmgrozinger@psu.edu or 814-865-2214. Margaret Douglas can be reached at douglasm@dickinson.edu or 717-254-8393.

Penn State

Related Bees Articles:

Bees point to new evolutionary answers
Evolutionary biology aims to explain how new species arise and evolve to occupy myriad niches -- but it is not a singular or simplistic story.
Quantifying objects: bees recognize that six is more than four
A new study at the University of Cologne proves that insects can perform basic numerical cognition tasks.
Prescribed burns benefit bees
Freshly burned longleaf pine forests have more than double the total number of bees and bee species than similar forests that have not burned in over 50 years, according to new research from North Carolina State University.
Insecticides are becoming more toxic to honey bees
Researchers discover that neonicotinoid seed treatments are driving a dramatic increase in insecticide toxicity in U.S. agricultural landscapes, despite evidence that these treatments have little to no benefit in many crops.
Neonicotinoids: Despite EU moratorium, bees still at risk
Since 2013, a European Union moratorium has restricted the application of three neonicotinoids to crops that attract bees because of the harmful effects they are deemed to have on these insects.
Bees 'surf' atop water
Ever see a bee stuck in a pool? He's surfing to escape.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
Where are the bees? Tracking down which flowers they pollinate
Earlham Institute (EI), with the University of East Anglia (UEA), have developed a new method to rapidly identify the sources of bee pollen to understand which flowers are important for bees.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Trees for bees
Planting more hedgerows and trees could hold the key to helping UK bees thrive once again, a new study argues.
More Bees News and Bees Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.