Immune cell health discovery could optimise cancer therapies

January 21, 2020

Scientists at UCL have discovered how immune cells, essential for tackling life-threatening infections and cancers, are able to 'recycle' material within themselves in order to stay healthy and function, a breakthrough finding which could lead to more effective immunotherapies.

In the study, published in Cell Reports, researchers investigated how 'autophagy' - the natural physiological process of 'self-eating' which allows intracellular components, such as mitochondria, to be degraded and replaced - takes place in liver-based T cells.

T cells are a subset of lymphocytes (white blood cells) that play a key role in protecting against chronic liver infection and tumours.

Researchers discovered that T cells in the liver had an enhanced rate of autophagy and that this is enabled by the presence and action of a soluble messenger protein found in the liver: the cytokine 'interleukin-15' (IL-15).

This is the first study to identify that IL-15 can boost autophagy in human T cells and researchers believe this new understanding could enable emerging immunotherapies, such as CAR T cell therapy, to be positively manipulated to boost T cell health and survival.

Corresponding author, Dr Leo Swadling (UCL Infection & Immunity), said: "The liver is a common site for chronic viral infection and tumours and T cells play a key role in protecting against these.

"T cells living within the liver must adapt to the stressful microenvironment, with low levels of oxygen and an abundance of inhibitory signals, to find ways of maintaining prolonged survival and functionality.

"We discovered that a population of T cells able to live exclusively within the human liver can switch on autophagy to maintain nutrient supply and renew organelles like mitochondria to maintain their fitness. We could imprint this same adaptation on T cells taken from blood by exposing them to the cytokine IL-15."

The research team were assisted by surgeons and the Tissue Access for Patient Benefit project (TAPb) at The Royal Free Hospital, London, and gained rare access to live immune cells from human liver samples.

Several cutting-edge single cell technologies were used to compare autophagy in the T cells from these liver samples to T cells in the blood.

Lead author, Professor Mala Maini (UCL Infection & Immunity), said: "Understanding how human T cells are adapted for autophagy opens up the possibility of manipulating this dynamic process, which could enable a wide range of new and effective therapeutic possibilities.

"For instance, we can now investigate whether modulating autophagy rates can be used to improve emerging immunotherapies for cancer and chronic viral infection (such as TCR-redirected T cells and CAR T cells), where T cells must persist and function in diverse tumour and tissue microenvironments."
-end-
The study was led by UCL Division of Infection & Immunity, with support from UCL Institute for Liver & Digestive Health, King's College London, QMUL and the University of Oxford. Funding was provided with grants from Wellcome and the Medical Research Foundation.

University College London

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.