Antiviral compound offers hope against deadly flu

January 21, 2020

What keeps most infectious disease researchers up at night aren't infamous viruses like Ebola. Instead, influenza, commonly known as the flu, continues to be a clear and present danger to humanity.

"Influenza is a huge problem, as the virus sickens or kills millions of people each year," says David Markovitz, M.D., professor of internal medicine in the division of infectious diseases at Michigan Medicine. "A new pandemic along the lines of the 1918 Spanish flu has the potential to kill millions here and abroad."

To that end, he and an extensive team of collaborators have worked for years on broad-spectrum antiviral drugs developed from, of all things, banana plants.

In a new paper published in the Proceedings of the National Academy of Sciences, Markovitz, first author Evelyn Coves-Datson, a M.D., Ph.D. student, Akira Ono, Ph.D., professor of microbiology and immunology and their team have shown that an engineered compound based on a banana lectin, a protein called H84T, has real potential for clinical use against influenza.

In their experiments, more than 80% of mice exposed to a form of influenza that is typically fatal were able to survive the disease after receiving an injection of the protein, even up to 72 hours after exposure.

The team also provides early evidence that the compound is safe. A downside of naturally occurring banana lectin--which can cause inflammation by inappropriately activating the immune system--wasn't present in mice given H84T. Furthermore, because H84T is a protein, there was concern that the body would recognize it as foreign and develop antibodies against it, thereby neutralizing it or causing harm. The team found that while mice did develop antibodies against H84T, they didn't appear to be adversely affected by them.

The compound works because it targets a sugar called high mannose, which is present on the outside of certain viruses but not on most healthy cells. "We were able to show that H84T blocks the ability of the influenza virus to fuse with structures termed endosomes in the human cell, a key step in infection," he explains. Doing so disabled their ability to replicate and wreak havoc.

Amazingly, this mechanism of action, binding of high mannose sugars on the surface of viruses, means that H84T is effective not only against influenza, but also against Ebola, HIV, measles, MERS, a new deadly viral illness that was first reported in Saudi Arabia in 2012, SARS and all other coronaviruses tested.

Even more promising is that the compound works where Tamiflu (oseltamivir), the current standard therapy for severe flu, has failed. "We've also shown that there may be a synergistic effect between H84T and Tamiflu," says Markovitz.

His team hopes to do more research with the compound in humans in the hopes of getting it to market. "We envision the government potentially stockpiling it in the event of a pandemic." However, he says, "there are many difficulties to commercialization. Pharmaceutical economics do not seem to favor the development of antivirals or antibacterials for one-time usage, which is a huge problem."
-end-
This paper also included the following U-M researchers: Steven King, Maureen Legendre, Auroni Gupta, Susana Chan and Emily Gitlin.

Paper cited: "A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo," Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.191515211

Michigan Medicine - University of Michigan

Related Influenza Articles from Brightsurf:

Predicting influenza epidemics
Researchers at Linköping University, Sweden, have developed a unique method to predict influenza epidemics by combining several sources of data.

Common cold combats influenza
As the flu season approaches, a strained public health system may have a surprising ally -- the common cold virus.

Scent-sensing cells have a better way to fight influenza
Smell receptors that line the nose get hit by Influenza B just like other cells, but they are able to clear the infection without dying.

New antivirals for influenza and Zika
Leuven researchers have deployed synthetic amyloids to trigger protein misfolding as a strategy to combat the influenza A and Zika virus.

Assessment of deaths from COVID-19, seasonal influenza
Publicly available data were used to analyze the number of deaths from seasonal influenza deaths compared with deaths from COVID-19.

Obesity promotes virulence of influenza
Obesity promotes the virulence of the influenza virus, according to a study conducted in mice published in mBio, an open-access journal of the American Society for Microbiology.

Influenza: combating bacterial superinfection with the help of the microbiota
Frenc researchers and from Brazilian (Belo Horizonte), Scottish (Glasgow) and Danish (Copenhagen) laboratories have shown for the first time in mice that perturbation of the gut microbiota caused by the influenza virus favours secondary bacterial superinfection.

Chemists unveil the structure of an influenza B protein
MIT chemists have discovered the structure of an influenza B protein called BM2, a finding that could help researchers design drugs that block the protein and help prevent the virus from spreading.

How proteins help influenza A bind and slice its way to cells
Researchers have provided new insight on how two proteins help influenza A virus particles fight their way to human cells.

Eating elderberries can help minimize influenza symptoms
Conducted by Professor Fariba Deghani, Dr. Golnoosh Torabian and Dr.

Read More: Influenza News and Influenza Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.