# New technique to study molecules and materials on quantum simulator discovered

January 21, 2020A new technique to study the properties of molecules and materials on a quantum simulator has been discovered.

The ground-breaking new technique, by physicist Oleksandr Kyriienko from the University of Exeter, could pioneer a new pathway towards the next generation of quantum computing.

Current quantum computing methods for studying the properties of molecules and materials on such a minute scale rely upon an ideal fault-tolerant quantum computer or variational techniques.

This new proposed approach, instead relies on the implementation of quantum evolution that would be readily available in many systems. The approach is favourable for modern state-of-the-art quantum setups, notably including cold atom lattices, and can serve as a software for future applications in material science.

The study could pave the way to studying the properties of strongly correlated systems, including coveted Fermi-Hubbard model, which can potentially offer the explanation of high-temperature superconductivity.

The research is published in the new Nature journal npj

*Quantum Information*.

Dr Kyriienko, part of the Physics department at the University of Exeter and lead author said: "So far I have seen that the ability to run quantum dynamics can be used for finding the ground state properties.

"The question, however, remains - can we use it for studying excited states? Can we devise other powerful algorithm based on the principles? The experience tells this is possible, and will be a subject of future efforts."

The idea of quantum simulation was proposed by Nobel Prize winner Richard Feynman in 1982, where he suggested that quantum models can be most naturally simulated if we use a well-controlled and inherently quantum system.

Developing on this idea, a separate branch of quantum information science has emerged, based on the notion of quantum computer - a universal quantum device where digital sequences of operations (quantum gates) allow to solve certain problems with superior scaling of required operation as compared to conventional classical computers.

However, the original Feynman's intention, which was later named analog quantum simulation, so far was mostly used for observing dynamical properties of quantum systems, while precluding finding the ground state associated to various computation tasks.

In the new study, Oleksandr Kyriienko has shown that it is possible to exploit sequential evolution of the system with wavefunction overlap measurements, such that effective study of ground state properties becomes possible with analog quantum simulators.

The main technique which allows to reach ground state is effective representation of non-unitary operator which "distils" the ground state by running the sum of unitary evolution operators for different evolution times.

Importantly, the study suggests that dynamics of the quantum system is a valuable resource for computation, as the ability to propagate the system paired with overlap measurements can give access to the low-temperature spectrum of a quantum system which define its behaviour.

The findings establish the framework with dynamics-based quantum simulation using programmable quantum simulators, and serve as a quantum software to many well-controlled quantum lattice systems where large number of atoms (~100) precludes classical simulation.

This in turn can revolutionize our understanding of complex condensed matter systems and chemistry.

-end-

Quantum inverse iteration algorithm for programmable quantum simulators by Oleksandr Kyriienko is published in npj *Quantum Information*.

University of Exeter

**Related Quantum Computer Articles:**

Wiring the quantum computer of the future: A novel simple build with existing technology

Efficient quantum computing is expected to enable advancements that are impossible with classical computers.

Efficient quantum computing is expected to enable advancements that are impossible with classical computers.

To tune up your quantum computer, better call an AI mechanic

A paper in the journal Physical Review Applied outlines a way to teach an AI to make an interconnected set of adjustments to the quantum dots that could form the qubits in a quantum computer's processor.

A paper in the journal Physical Review Applied outlines a way to teach an AI to make an interconnected set of adjustments to the quantum dots that could form the qubits in a quantum computer's processor.

USTC realizes the first quantum-entangling-measurements-enhanced quantum orienteering

Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

Researchers enhanced the performance of quantum orienteering with entangling measurements via photonic quantum walks.

Computer-based weather forecast: New algorithm outperforms mainframe computer systems

The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

The exponential growth in computer processing power seen over the past 60 years may soon come to a halt.

A convex-optimization-based quantum process tomography method for reconstructing quantum channels

Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.

Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.

What a pair! Coupled quantum dots may offer a new way to store quantum information

Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.

Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have for the first time created and imaged a novel pair of quantum dots -- tiny islands of confined electric charge that act like interacting artificial atoms.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship

In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

A discovery helps the development of a topological quantum computer and dark matter detector

The MnBi2Te4 single crystal synthesised by the researchers can be used in developing superfast memory cells, spintronics devices, quantum computers, and even a dark matter detector.

The MnBi2Te4 single crystal synthesised by the researchers can be used in developing superfast memory cells, spintronics devices, quantum computers, and even a dark matter detector.

A new quantum data classification protocol brings us nearer to a future 'quantum internet'

A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.

A new protocol created by researchers at the Universitat Autònoma de Barcelona sorts and classifies quantum data by the state in which they were prepared, with more efficiency than the equivalent classical algorithm.

Johns Hopkins researchers discover material that could someday power quantum computer

Quantum computers with the ability to perform complex calculations, encrypt data more securely and more quickly predict the spread of viruses, may be within closer reach thanks to a new discovery by Johns Hopkins researchers.

Quantum computers with the ability to perform complex calculations, encrypt data more securely and more quickly predict the spread of viruses, may be within closer reach thanks to a new discovery by Johns Hopkins researchers.

## Trending Science News

**Current Coronavirus (COVID-19) News**

## Top Science Podcasts

We have hand picked the**top science podcasts of 2020**.

**Now Playing: TED Radio Hour**

**Listen Again: Reinvention**

Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselvesthis hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.

**Now Playing: Science for the People**

**#562 Superbug to Bedside**

By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.

**Now Playing: Radiolab**

**Dispatch 6: Strange Times**

Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.