Nav: Home

Mixing the unmixable -- a novel approach for efficiently fusing different polymers

January 21, 2020

Cross-linked polymers are structures where large molecular chains are linked together, allowing exceptional mechanical properties and chemical resistance to the final product. However, their modification is not easy. Now, scientists at Tokyo Institute of Technology develop a method that allows the fusion of different polymers together easily, allowing the precise tuning of the properties of the final material by selecting appropriate base polymers and mixing them at the right proportion.

Polymers, large molecular chains composed of small repeating subunits, can be found all around us and also within us. DNA and proteins are some familiar natural polymers. In contrast, synthetic polymers, such as plastics, were first produced about a century ago, but have since then found their way into our everyday lives because of their amazing properties. Polymers can be tailored according to their constituent subunits to confer them with many desirable characteristics, such as mechanical strength, stretchability, permeability, and so on.

Another way to obtain even more functionalities in polymers is by cross-linking them. Cross-linked polymers (CPLs) are polymers that are linked together using special cross-linker molecules. Certain CPLs exhibit outstanding properties due to their interlocked tridimensional structures. Motivated by the potential applications, a research team from Tokyo Institute of Technology (Tokyo Tech) led by Professor Hideyuki Otsuka has recently achieved a breakthrough in this field: they managed to cross-link different CPLs together through an unprecedented approach. "The development of a novel method to fuse different CPLs would bring a revolution in the field, as their mechanical properties can be easily and systematically tuned in an operationally simple process," explains Otsuka.

The researchers achieved this feat by switching things up in the cross-linker molecule they used. For a CPL to have self-healing capabilities, which is very attractive for many applications, the polymers have to be joined by what is known as dynamic covalent bonds. These bonds also allow for fusing different types of CPLs, but the carbon molecules used in currently available linkers are prone to oxidizing, which complicates the fusion and processing of CPLs in bulk. What this research team did was employ a linker molecule, called BiTEMPS, that cross-links polymers through a central sulfur-sulfur (S-S) covalent bond. This bond can be temporarily cleaved in half at temperatures higher than 80°C, which allows for exchange among different polymer at the free ends, called TEMPS radicals (see Figure 1). Through this cleaving and re-joining process, different CPLs can be fused together. One of the main advantages of the TEMPS radicals is that they are highly stable against oxygen, meaning that all the processing can be done without requiring oxygen care.

To prove the usefulness of their approach, the researchers cross-linked two types of CPLs, one of them much more elastic than the other. By hot-pressing their mixture, they managed to fuse the CPLs together, and the mechanical properties of the final material were dependent on the ratio of the raw CPLs used. "The mechanical properties of the fused samples could be widely tuned to make them as soft and elastic as desired. As the variety of available polymers is almost infinite, it should be possible to generate materials that exhibit a broad spectrum of physical properties using our method by judiciously choosing appropriate polymer compositions and mixing ratios," concludes Otsuka. This innovative method will significantly advance the field of CPLs, allowing for the development of highly tailored materials for specialized applications.
-end-


Tokyo Institute of Technology

Related Polymers Articles:

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.
Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.
Mixing the unmixable -- a novel approach for efficiently fusing different polymers
Cross-linked polymers are structures where large molecular chains are linked together, allowing exceptional mechanical properties and chemical resistance to the final product.
Theoretical tubulanes inspire ultrahard polymers
Rice University engineers print 3D blocks based on theoretical tubulanes and find they're nearly as hard as diamond.
New synthesis method yields degradable polymers
MIT chemists have come up with a way to make certain drug-delivery polymers more readily degradable by adding a novel type of building block to the polymer backbone.
Bottom-up synthesis of crystalline 2D polymers
Scientists at TU Dresden and Ulm University have succeeded in synthesizing sheet-like 2D polymers by a bottom-up process for the first time.
Secret messages hidden in light-sensitive polymers
Scientists from the CNRS and Aix-Marseille Université have recently shown how valuable light-sensitive macromolecules are: when exposed to the right wavelength of light, they can be transformed so as to change, erase or decode the molecular message that they contain.
Successful application of machine learning in the discovery of new polymers
As a powerful example of how artificial intelligence (AI) can accelerate the discovery of new materials, scientists in Japan have designed and verified polymers with high thermal conductivity -- a property that would be the key to heat management, for example, in the fifth-generation (5G) mobile communication technologies.
How to capture waste heat energy with improved polymers
By one official estimate, American manufacturing, transportation, residential and commercial consumers use only about 40 percent of the energy they draw on, wasting 60 percent.
Researchers can now predict properties of disordered polymers
Thanks to a team of researchers from the University of Illinois at Urbana-Champaign and the University of Massachusetts Amherst, scientists are able to read patterns on long chains of molecules to understand and predict behavior of disordered strands of proteins and polymers.
More Polymers News and Polymers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.