A display that completely blocks off counterfeits

January 21, 2021

Despite the anticounterfeiting devices attached to luxury handbags, marketable securities, and identification cards, counterfeit goods are on the rise. There is a demand for the next-generation anticounterfeiting technology - that surpasses the traditional ones - that are not easily forgeable and can hold various data.

A POSTECH research team, led by Professor Junsuk Rho of the departments of mechanical engineering and chemical engineering, Ph.D. candidates Chunghwan Jung of the Department of Chemical Engineering and Younghwan Yang of the Department of Mechanical Engineering, have together succeeded in making a switchable display device using nanostructures that is capable of encrypting full-color images depending on the polarization of light. These findings were recently published in Nanophotonics.

The new device developed by the research team was produced with a microstructure about one thousand times thinner than a strand of hair which is called a metasurface. It is known that various colors can be expressed through a uniformly arranged microstructures within the metasurface. Because the microstructures produced this time have very small pixels, they boast high resolution (approximately 40,000 dpi) and wide viewing angle while being thin, which allows it to be produced in the form of stickers.

In addition, unlike previous studies that focused on the expression of various colors, in this study, the on and off states can be adjusted according to the polarization of the incident light. This new device displays full-color images during the on state and shows no images in the off state.

Besides having the ability to turn on and turn off an image, the device can switch between different images. Specifically, by arranging three consecutive nanostructures, it achieves higher colorization rate than the previous studies. The researchers properly configured a total of 125 types of structures to encode a full-color image and proved through experiments that it completely turns off according to the polarization.

This feature can be utilized in real life as an anti-forgery device. For example, it can be designed into a security label that appears to be a simple color image to the naked eye, but reveals the serial number when a special filter is used. Moreover, by utilizing its ultrahigh resolution feature and inserting high-capacity data security algorithm, it can be used as a new security device that can replace the traditional labeling method.

Chunghwan Jung, the first author of the paper, commented, "This new device is practically impossible to forge because it requires an electron microscope with magnification capacity of several thousand and a nanometer-scale production equipment."

"This device is an ultra-high-resolution device-type display that can turn on and turn off full-color images according to the polarization component of the incident light," remarked the corresponding author Professor Junsuk Rho who led the study. "These displays can store multiple images simultaneously and can be applied to in optical cryptography."
-end-
This research was conducted with the support from the Samsung Research Funding & Incubation Center for Future Technology.

Pohang University of Science & Technology (POSTECH)

Related Nanostructures Articles from Brightsurf:

Unlocking PNA's superpowers for self-assembling nanostructures
Researchers at Carnegie Mellon University have developed a method for self-assembling nanostructures with gamma-modified peptide nucleic acid, a synthetic mimic of DNA.

Machine learning enhances light-matter interactions in dielectric nanostructures
The discovery has promising possibilities for the development of a wide range of photonic devices and applications including those involved in optical sensing, optoacoustic vibrations, and narrowband filtering.

Electron correlations in carbon nanostructures
Graphene nanoribbons are only a few carbon atoms wide and have different electrical properties depending on their shape and width.

Paving a way to achieve unexplored semiconductor nanostructures
A research team of Ehime University paved a way to achieve unexplored III-V semiconductor nanostructures.

Nanostructures help to reduce the adhesion of bacteria
Scientists has shown how bacteria adhere to rough surfaces at the microscopic level.

Diamonds are forever: New foundation for nanostructures
Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have fabricated a novel glass and synthetic diamond foundation that can be used to create miniscule micro -- and nanostructures.

How do atoms vibrate in graphene nanostructures?
Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material.

Heterophase nanostructures contributing to efficient catalysis
In the research on phase engineering of noble metal nanomaterials, amorphous/crystalline heterophase nanostructures have exhibited some intriguing properties.

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs
Thanks to intensive research in the past three decades, organic light-emitting diodes (OLEDs) have been steadily conquering the electronics market -- from OLED mobile phone displays to roll-out television screens, the list of applications is long.

Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.

Read More: Nanostructures News and Nanostructures Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.