Adaptive optics with cascading corrective elements

January 21, 2021

Microscopy is the workhorse of contemporary life science research, enabling morphological and chemical inspection of living tissue with ever-increasing spatial and temporal resolution. Even though modern microscopes are genuine marvels of engineering, minute deviations from ideal imaging conditions will still lead to optical aberrations that rapidly degrade imaging quality. A mismatch between the refractive indices of the sample and its immersion medium, deviations in the thickness of sample holders or cover glasses, the effects of aging on the instrument--such deviations can manifest themselves in the form of spherical aberration and focusing errors. Also, particularly for deep tissue imaging, an essential tool in neurobiology research, an inhomogeneous refractive index of the sample and its complex surface shape can lead to additional higher order aberrations.

Adaptive optics microscopy

Adaptive optics (AO), an image correction technique first used in astronomical telescopes for compensating the effects of atmospheric turbulence, is the state-of-the-art method to dynamically correct for sample and system-induced aberrations in a microscopy system. A typical AO system features an active, shapeshifting optical element that can reproduce the inverse of the wavefront error present in the system. Commonly taking the form of either a deformable mirror or a liquid crystal spatial light modulator, the limitations of this element define the quality of achievable aberration correction and thus the widespread applicability of AO microscopy.

As reported in Advanced Photonics, researchers from the University of Freiburg, Germany, have made a significant advance in AO microscopy through the demonstration of a new AO module comprising two deformable phase plates (DPPs). In contrast to deformable mirrors, the DPP system is a wavefront modulator operating in transmission, enabling direct AO integration with existing microscopes. In this AO configuration, similar to hi-fidelity loudspeakers with separate woofer and tweeter units, one of the optical modulators is optimized for low-spatial frequency aberrations, while the second is used for high-frequency correction.

Cascading modulation

A major challenge for an AO system with multiple phase modulators is how to place them on optically equivalent (conjugate) positions, often requiring multiple additional optical components to relay the image until it reaches the detector. Therefore, configuring even two modulators in an AO system is very challenging. Since the DPPs are <1 mm in thickness, cascading two or more modulators within acceptable proximity becomes substantially more practical. The Freiburg team also developed a new method to optimally control multiple phase modulators regardless of their individual specifications, potentially enabling cascading of many more devices for increased range and fidelity.

To demonstrate its performance, the team integrated their new AO system into a custom-built fluorescence microscope, where sample-induced aberrations are iteratively estimated without a wavefront sensor. Imaging experiments on synthetic samples demonstrated that the new AO system not only doubles the aberration correction range, but also greatly improves correction quality. The work demonstrates that more advanced aberration correction schemes, such as multi-conjugate adaptive optics, can be implemented as easily and with new and more advanced control methods.
Read the original research article by Pouya Rajaeipour et al., "Cascading optofluidic phase modulators for performance enhancement in refractive adaptive optics," Adv. Photonics 2(6), 066005, doi 10.1117/1.AP.2.6.066005.

SPIE--International Society for Optics and Photonics

Related Microscopy Articles from Brightsurf:

Ultracompact metalens microscopy breaks FOV constraints
As reported in Advanced Photonics, their metalens-integrated imaging device (MIID) exhibits an ultracompact architecture with a working imaging distance in the hundreds of micrometers.

Attosecond boost for electron microscopy
A team of physicists from the University of Konstanz and Ludwig-Maximilians-Universität München in Germany have achieved attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser -- new insights into light-matter interactions.

Microscopy beyond the resolution limit
The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy.

Quantum light squeezes the noise out of microscopy signals
Researchers at the Department of Energy's Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Limitations of super-resolution microscopy overcome
The smallest cell structures can now be imaged even better: The combination of two microscopy methods makes fluorescence imaging with molecular resolution possible for the first time.

High-end microscopy refined
New details are known about an important cell structure: For the first time, two Würzburg research groups have been able to map the synaptonemal complex three-dimensionally with a resolution of 20 to 30 nanometres.

Developing new techniques to improve atomic force microscopy
Researchers from the University of Illinois at Urbana-Champaign have developed a new method to improve the noise associated with nanoscale chemical imaging using atomic force microscopy.

New discovery advances optical microscopy
New Illinois ECE research is advancing the field of optical microscopy, giving the field a critical new tool to solve challenging problems across many fields of science and engineering including semiconductor wafer inspection, nanoparticle sensing, material characterization, biosensing, virus counting, and microfluidic monitoring.

New microscopy method provides unprecedented look at amyloid protein structure
Neurodegenerative diseases such as Alzheimer's and Parkinson's are often accompanied by amyloid proteins in the brain that have become clumped or misfolded.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Read More: Microscopy News and Microscopy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to