New biochemical clues in cell receptors help explain how SARS-CoV-2 may hijack human cells

January 21, 2021

The SARS-CoV-2 virus may enter and replicate in human cells by exploiting newly-identified sequences within cell receptors, according to work from two teams of scientists. The findings from both groups paint a more complete portrait of the various cellular processes that SARS-CoV-2 targets to not only enter cells, but to then multiply and spread. The results also hint that the sequences could potentially serve as targets for new therapies for patients with COVID-19, although validation in cells and animal models is needed. Scientists know that SARS-CoV-2 binds the ACE2 receptor on the surface of human cells, after which it enters the cell through a process known as endocytosis. Research has suggested that the virus may hijack or interfere with other processes such as cellular housekeeping (autophagy) by targeting other receptors called integrins. However, not much is known about exactly how the virus takes advantage of integrins on the biochemical level. Analyzing the Eukaryotic Linear Motif database, Bálint Mészáros and colleagues discovered that ACE2 and various integrins contained several short linear motifs (SLiMs ) - small amino acid sequences - that they predicted play a role in endocytosis and autophagy. The scientists then compiled a list of currently used experimental treatments and approved drugs that can target the interactions between SARS-CoV-2 and its target SLiMs. Separately, Johanna Kliche and colleagues performed molecular tests to see whether these SLiMs interacted with proteins that contribute to autophagy and endocytosis. The team found that two SLiMs in ACE2 bound to the endocytosis-related proteins SNX27 and SHANK, and one SLiM in the integrin β3 bound to two proteins involved in autophagy. In addition to providing a resource for repurposing drugs for SARS-CoV-2, Mészáros et al. say their prediction methods could help identify similar under-the-radar SLiMs that assist with the replication of other viruses that cause disease.

American Association for the Advancement of Science

Related Autophagy Articles from Brightsurf:

Surprising insights into the role of autophagy in neuron
Autophagy protects our neurons in the brain, but for entirely different reasons than previously assumed, as researchers from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Charité in Berlin have shown.

Revealing the identity of the last unknown protein of autophagy
Japanese scientists discovered that Atg9, one of the proteins that function to mediate autophagy, has phospholipid-translocation activity (the lipid scramblase activity) between the two layers of the lipid bilayer?and elucidated that the protein's activity brings about autophagosome membrane expansion.

Lipids, lysosomes, and autophagy: The keys to preventing kidney injury
Lysosomes are cellular waste disposal organelles containing potent enzymes that cause cellular damage if they leak out of ruptured lysosomes.

How zika virus degrades essential protein for neurological development via autophagy
Researchers at the University of Maryland (UMD) shed new light on how Zika virus hijacks our own cellular machinery to break down an essential protein for neurological development, getting it to ''eat itself''.

Autophagy: the beginning of the end
Autophagy, from the Greek for 'self-eating', is an essential process that isolates and recycles cellular components under conditions of stress or when resources are limited.

Cellular cleanup! Atg40 folds the endoplasmic reticulum to facilitate its autophagy
Scientists at Tokyo Institute of Technology (Tokyo Tech) and Institute of Microbial Chemistry investigated 'ER-phagy,' the degradation mechanism of the endoplasmic reticulum (ER), an important organelle with multiple biologically necessary functions like the synthesis of proteins and lipids.

How cells decide the way they want to recycle their content
Researchers from Tokyo Medical and Dental University (TMDU) identified a new phosphorylation site of Ulk1 as a novel regulating mechanism of alternative autophagy.

Autophagy: Scientists discover novel role for self-recycling process in the brain
Proteins classically associated with autophagy regulate the speed of intracellular transport.

Insights into the diagnosis and treatment brain cancer in children
In a recent study published in Autophagy, researchers at Kanazawa University show how abnormalities in a gene called TPR can lead to pediatric brain cancer.

Autophagy degrades liquid droplets, but not aggregates, of proteins
Autophagy is a mechanism through which cellular protein is degraded.

Read More: Autophagy News and Autophagy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to