Nav: Home

Will blocking IL-17A help treat kidney disease?

January 22, 2016

Many different diseases and insults can injure kidneys, resulting in kidney failure. Some autoimmune diseases damage glomeruli (the 'filtering units' of the kidney), while problems with the tubules (for example, impaired blood flow to the kidney at the time of renal transplantation, radio-contrast dye or drugs) can cause acute kidney injury (AKI). A common outcome in either type of injury is that immune cells infiltrate the kidney and this inflammation can result in permanent scarring.

Since the discovery of the proinflammatory cytokines, interleukin (IL)-17A and IL-17F in the early 1990s, many immune cells have proven to be a source of these cytokines, including some T helper cells, now called Th17 cells. Recent human trials of biological therapies targeting IL-17A, components of its receptor or precursor cytokines, have significantly improved clinical disease in some conditions where Th17 cells are implicated -- particularly psoriasis.

We have reviewed the research that indicates that IL-17A/F and Th17 cells contribute to renal injury. Animal studies of diseases damaging glomeruli suggest that they are involved in the initial inflammatory response within the kidney. In studies of patients with autoimmune diseases, such as systemic lupus erythematosus, elevated IL-17A levels and higher proportions of Th17 cells in circulating blood have been found, correlating with disease severity. Animal models of AKI have demonstrated that administration of an antibody against IL-17A reduces renal injury. Therefore, blockade of IL-17A/F signaling may be a promising avenue to explore in clinical trials as a novel therapy for the treatment and prevention of immune mediated renal diseases.
-end-
Joanna R. Ghali, Stephen R. Holdsworth and A Richard Kitching.

Centre for Inflammatory Diseases, Department of Medicine, Monash University, Victoria, Australia.

Bentham Science Publishers

Related Immune Cells Articles:

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
Identification of new populations of immune cells in the lungs
In an article published in Nature Communications, the Immunophysiology Laboratory of the GIGA Institute, headed by Prof.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.