GTPases in Trafficking, Autophagy and Disease

January 22, 2016

Bethesda, MD - Arf, Arl, Rab and Rag GTPases control traffic, proteostasis, membrane dynamics, signaling and lipid metabolism. Intensive investigation of the cellular, molecular and structural mechanisms has led to surprising discoveries and paradigm shifts such as non-classical interactions and modifications controlling localization and function. New fields have emerged (e.g. Rag GTPases in proteostasis), and dis-regulation of small GTPase networks has been implicated in human disease conditions from inherited disorders to complex disease states.

This SRC brings together investigators interested in trafficking regulation, membrane dynamics, proteostasis, and disease etiology for a focused meeting titled, "GTPases in Trafficking, Autophagy and Disease". Represented disciplines will include biochemists, structural biologists, membrane biologists, cell biologists, geneticists, bioinformaticists, systems biologists, developmental biologists, neurobiologists, microbiologists, cancer biologists, virologists, immunologists, and others. This exceptional diversity reflects the fundamental role of trafficking GTPases in biological processes and disease. There will be ten sessions on topics such as Activation and deactivation of GTPases, Regulation of and by post translational modifications, Structural and molecular mechanisms, Small GTPases in the endocytic system, Small GTPases in the secretory system, Small GTPases in membrane trafficking in specialized cells, Autophagy, Rag GTPases, and GTPases and disease. The sessions will include 30 regular talks and at least 12 short talks selected from abstracts. The opening session will include an Overview of the evolution of trafficking GTPases followed by 2 min preview talks by poster presenters. In addition to talks and poster sessions, recreational activities will provide opportunities for students, postdoctoral fellows, new investigators and established leaders to interact and explore collaborative possibilities.

FASEB has announced a total of 36 Science Research Conferences (SRC) in 2016. Registration opens January 7, 2016. For more information about an SRC, view preliminary programs, or find a listing of all our 2016 SRCs, please visit http://www.faseb.org/SRC.
-end-
Since 1982, FASEB SRC has offered a continuing series of inter-disciplinary exchanges that are recognized as a valuable complement to the highly successful society meetings. Divided into small groups, scientists from around the world meet intimately and without distractions to explore new approaches to those research areas undergoing rapid scientific changes. In efforts to expand the SRC series, potential organizers are encouraged to contact SRC staff at SRC@faseb.org. Proposal guidelines can be found at http://www.faseb.org/SRC.

FASEB is composed of 30 societies with more than 125,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Federation of American Societies for Experimental Biology

Related Autophagy Articles from Brightsurf:

Surprising insights into the role of autophagy in neuron
Autophagy protects our neurons in the brain, but for entirely different reasons than previously assumed, as researchers from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Charité in Berlin have shown.

Revealing the identity of the last unknown protein of autophagy
Japanese scientists discovered that Atg9, one of the proteins that function to mediate autophagy, has phospholipid-translocation activity (the lipid scramblase activity) between the two layers of the lipid bilayer?and elucidated that the protein's activity brings about autophagosome membrane expansion.

Lipids, lysosomes, and autophagy: The keys to preventing kidney injury
Lysosomes are cellular waste disposal organelles containing potent enzymes that cause cellular damage if they leak out of ruptured lysosomes.

How zika virus degrades essential protein for neurological development via autophagy
Researchers at the University of Maryland (UMD) shed new light on how Zika virus hijacks our own cellular machinery to break down an essential protein for neurological development, getting it to ''eat itself''.

Autophagy: the beginning of the end
Autophagy, from the Greek for 'self-eating', is an essential process that isolates and recycles cellular components under conditions of stress or when resources are limited.

Cellular cleanup! Atg40 folds the endoplasmic reticulum to facilitate its autophagy
Scientists at Tokyo Institute of Technology (Tokyo Tech) and Institute of Microbial Chemistry investigated 'ER-phagy,' the degradation mechanism of the endoplasmic reticulum (ER), an important organelle with multiple biologically necessary functions like the synthesis of proteins and lipids.

How cells decide the way they want to recycle their content
Researchers from Tokyo Medical and Dental University (TMDU) identified a new phosphorylation site of Ulk1 as a novel regulating mechanism of alternative autophagy.

Autophagy: Scientists discover novel role for self-recycling process in the brain
Proteins classically associated with autophagy regulate the speed of intracellular transport.

Insights into the diagnosis and treatment brain cancer in children
In a recent study published in Autophagy, researchers at Kanazawa University show how abnormalities in a gene called TPR can lead to pediatric brain cancer.

Autophagy degrades liquid droplets, but not aggregates, of proteins
Autophagy is a mechanism through which cellular protein is degraded.

Read More: Autophagy News and Autophagy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.