Nav: Home

Russian volunteer programmers helped the Lomonosov MSU to find the mysterious black holes

January 22, 2016

The term "black holes" was first used in the mid-20th century by theoretical physicist John Wheeler. This term denotes relativistic supermassive objects that are invisible in all electromagnetic waves, but a great number of astrophysical effects confirms their existence.

There are two basic types of black holes known to scientists according to observations: supermassive black holes and stellar-mass black holes. It is generally believed that stellar-mass black holes are formed in the end of the evolution of massive stars, when stellar energy sources are exhausted, and the star collapse due to its own gravity. Theoretical calculations impose restrictions on their mass to the extent of 5-50 solar masses.

It's less clear how supermassive black holes come to existence. Masses of these black holes sitting in the center of most galaxies range between millions and billions of solar masses. Quasars, the active galactic nuclei, are supermassive black holes observed by astronomers at high redshift. It means that these giants existed in the first few hundred million years after the Big Bang. Ivan Zolotukhin, who works at the Research Institute of Astrophysics and Planetology (Toulouse), said: "The astronomers look for black holes of intermediate mass, because no black hole that weighs a billion times more than the Sun could have been formed without them in just 700 million years."

It is believed that the first generation of stars did not contain metals and, therefore, their masses could have exceeded that of the Sun hundreds of times, and in the end of their evolution, they could become much more massive black holes than those observed today. These black holes merged into formation of thousands of solar masses, and further inclusion of galaxies and the accretion of matter led to the formation of supermassive black holes. Calculation models of hierarchical galaxy buildup have shown that there should have remained a small number of these intermediate mass black holes astronomers are looking for.

A small number means about hundred pieces per a galaxy similar to our Milky Way. They should fly somewhere high above the galaxy plain because while merging black holes acquire a huge impulse that sometimes can throw them out of the galaxy. About 10 years ago, the researchers were looking for such kind of holes (thousands of solar masses) among the heavy stellar-mass holes and the light supermassive ones, but nothing lighter than 500 thousand of solar masses has been found.

The paper was published in 2009 by astronomers from Toulouse, who in the course of a search for neutron stars in our galaxy accidentally found a bright X-ray source close to the galaxy, located in the distance of 100 Mpc from Earth. Luminosity evaluation showed that the mass of the object is about 10 thousand of solar masses. It is most likely that it shines due to the overflowing of matter into a black hole from a single star. A unique object called HLX-1 (Hyper-Luminous X-ray source 1) is now the only reliable candidate as the intermediate-mass black hole. Many astronomers were sure that this object is unique, and there won't be any similar to this. At the same time they didn't take into consideration that this object was found by chance, and in the catalog of sources covering only 1% of the sky. "I supposed that such objects should appear much more often, and we have proposed a method of large scale search", said Zolotukhin. The idea is to compare the objects from the wide-scale redshift survey of galaxies (SDSS) with the objects from a catalog of X-ray sources. "I suggested looking around galaxies for millions of X-ray objects with luminosity exceeding a certain value," the author explained.

Having applied the developed algorithm to both catalogs, the astronomers were able to find 98 objects, among which at least 16 must be associated with their galaxies. "These are the best candidates for intermediate-mass black hole. We have shown for the first time that a new type of hypothetical intermediate mass black holes (with masses from 100 to 100 000 of solar mass) not only exist, but also exist in a population. In other words, these objects are not unique, there are lots of them", clarified the author of the paper published in The Astrophysical Journal: http://iopscience.iop.org/0004-637X/817/2/88.

The methods of the Virtual Observatory were applied in the research, and all the conclusions were obtained exclusively with the use of publicly available data and, therefore, can be confirmed from any computer with Internet access.

Moreover, the authors used a new site to access the data of the XMM-Newton observatory. "The uniqueness of this web application is that for the first time in international fundamental science such a complicated project is made specifically for scientists by volunteers - highly skilled programmers, who, while working at the best IT-companies in Russia, devoted their free time to this web page. They are Alexey Sergeev, Askar Timirgazin, and Maxim Chernyshov," told Ivan Zolotukhin, "Many of my colleagues and I are still impressed by their work. The astronomers around the world can now enjoy the unique features of the site, and many discoveries can now be done directly online!" According to Zolotukhin, the current publication presents a series of studies based on this website. "It is important that thanks to simple and clear design scientists from other fields can now enjoy specific X-ray data," said the scientist.

This study essentially opens up the possibility for the search of intermediate-mass black holes. Since the researchers suggested more than a dozen of such candidates, it is expected that in the years to come they will be reliably confirmed with optical spectroscopic observations. In the near future it is expected to search for them by the six-meter telescope of the Special Astrophysical Observatory (Russia) as well. "If there is at least one confirmation - it will be published in Nature, and astronomers immediately will rush to explore these 98 objects," said the author of the work.

The candidates were found only in 2% of the sky, so astronomers hope to launch a Russian-German space telescope "Spektr-RG" in 2017. The researchers hope to discover hundreds of objects like HLX-1 through a deep X-ray view of the sky obtained by the means of this telescope.
-end-


Lomonosov Moscow State University

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.