Nav: Home

Scientists overcome missing data to demonstrate ART effectiveness in HIV-infected infants

January 22, 2016

PHILADELPHIA--(Jan. 22, 2016) -- Recent clinical trials conducted in South Africa have established that babies born with HIV should be treated with antiretroviral therapy (ART) as early as possible, since earlier treatment significantly decreases their mortality and morbidity rates. However, scientists were unsure whether infants treated with ART eventually develop a "normal" immune system. Knowing how an infant reacts to ART could help determine how to design curative strategies, but studying these infants can prove challenging due to inconsistent adherence to the study's schedule and the difficulty of collecting sufficient specimens in infants.

Now, scientists from The Wistar Institute, in collaboration with the Center for Interdisciplinary Research on AIDS at Yale University, have demonstrated that the issue of missing data can be successfully overcome using appropriate statistical methods, and as a result, they were able to show how early initiation of ART in infants preserves an expansion of naïve T-cells and allows the infant's immune system to be properly reconstructed.

The results of the study were published in the journal PLOS ONE.

Children born with HIV who do not receive treatment with ART experience progressive immunodeficiency that can lead to death, and if they do survive, their immune cell levels can be permanently offset. These children have low levels of naïve CD4+ T-cells and other immune effectors. Studying the levels of immune cells in these infected infants could help scientists develop better treatment strategies.

Scientists struggle with the frequent issue of missing data when it comes to studying these infants. Blood samples taken from these infants are routinely used for monitoring their health and response to treatment. However, it is often difficult to collect larger volumes of blood for immunological studies. Additionally, in resource-constrained settings, many infants miss visits because their caregivers may be unable to get them to a central location where samples can be routinely taken.

"Despite the best efforts of pediatricians and pediatric nurses, insufficient samples and missed visits have been the norm for pediatric studies in developing countries," said Luis J. Montaner, D.V.M., D.Phil., Director of the HIV-1 Immunopathogenesis Laboratory and Herbert Kean, M.D., Family Professor at The Wistar Institute. "Loss of data lead to loss of statistical power, so it's extremely important to develop methods that allow us to analyze data sets where data are randomly missing."

To solve this issue, Dr. Montaner teamed with Dr. Russell Barbour from the Center for Interdisciplinary Research on AIDS at Yale University and an international team of scientists to determine which methods could successfully overcome data missingness in a dataset collected in the course of a study on HIV-infected infants. While numerous methods have been suggested to address this issue, many have intrinsic problems like not being able to anticipate change over time and artificially reducing standard error. The team settled on two approaches that they believed would effectively address missing data. The first, called the Multiple Imputation (MI) method, uses the observed values as well as different imputations - values that are substituted for missing data - to fill in these gaps while not changing anything else about the data. The second approach was based on a Bayesian model, which was used to create 5,000 "alternative" instances of the dataset based on the observed data.

A total of 66 HIV-infected or seronegative infants born of HIV-infected mothers were recruited at the Chris Hani Baragwanath Hospital in Soweto, South Africa. These infants were enrolled in the Children with HIV Early Antiretroviral Therapy (CHER) trial and randomized to receive ART either as soon as they were enrolled or when their CD4+ T-cell count dropped below 20 percent. Blood samples were taken once every six months.

The use of these statistical methods allowed Dr. Montaner and his collaborators to demonstrate that early ART treatment results in higher CD4+ T-cell frequency, lower cellular activation, and had higher proportions of naïve T-cells. These results suggest that in infants with perinatal HIV infection early treatment may improve the chances of developing a functional immune system.

"Our study offers a field-based proof of concept that certain type of data missingness can be tolerated without affecting the integrity of a study," Montaner said. "We hope this will encourage other scientists to target hard-to-reach populations, particularly in resource-constrained settings."
-end-
This work was supported by the National Institutes of Health grant AI062512. Additional support was provided by The Philadelphia Foundation (Robert I. Jacobs Fund), the Stengel-Miller family, and AIDS funds from the Commonwealth of Pennsylvania and the Commonwealth Universal Research Enhancement (CURE) Program.

Other co-authors of this study from The Wistar Institute include Livio Azzoni and Emmanouil Papasavvas. Other co-authors of this study include Deborah Glencross and Wendy Stevens from the University of the Witwatersrand and National Health Laboratory Service in Johannesburg, South Africa; Mark Cotton from the Department of Paediatrics and Child Health at Stellenbosch University in Cape Town, South Africa; and Avy Violari from the Perinatal HIV Research Unit at the University of the Witwatersrand.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. On the Web at http://www.wistar.org.

The Wistar Institute

Related Immune System Articles:

Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
More Immune System News and Immune System Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab