Nav: Home

Gut instinct

January 22, 2016

Answers to the world's impending climate, energy and health needs may come not just from novel materials and emerging technologies, but also from rather more unexpected places. Such as the inside of an animal's gut.

Research conducted by UC Santa Barbara professor of chemical engineering Michelle O'Malley has shown that anaerobic microbes perform interesting and useful processes in the oxygen-free environment of an animal's intestinal tract. For instance, they can efficiently process plant material into what could become a usable fuel source, or generate compounds that could potentially be used in new medicines.

"My group is interested in turning plant waste into value-added chemicals, fuels and materials," she said.

For this work, O'Malley has been awarded the National Science Foundation's CAREER Award to further explore these microbial communities and their potential to help solve some of today's more pressing challenges.

"I'm honored to receive the CAREER award, especially from the NSF's Systems & Synthetic biology program," she said. "The program emphasizes interdisciplinary approaches that balance natural science discovery and engineered systems. Given how competitive these awards are, I'm happy to count myself as an awardee!"

As O'Malley explains it, the transformation of plant material to fuels, materials and chemicals is typically done by a break down of plant cellulose -- found mainly in the fleshy edible parts -- into sugar. From there it is processed by other microbes into the desired chemical.

The inedible parts of plants are a potential trove of convertible energy as well, according to O'Malley. Utilizing non-food parts of plants would not only provide an additional renewable source of sugar, but also address the competition for space with crops grown for food; this is a tough problem in the bio-based chemical industry, which requires large amounts of land to generate product.

"However, the energy contained in the non-food part of plants is trapped within a mixture of biopolymers like lignin, which requires lots of harsh treatments and powerful enzymes to release the sugars," she said. Processing the tougher parts of plants for cellulose remains a relatively costly and intensive process.

To tackle the problem, O'Malley and her lab turned to the experts: the anaerobic microbial communities in the guts of plant-eating animals, which have evolved to break down the leaves, stems, roots and other, tougher plant parts for the energy required by the herbivore.

"The mixture of microbes inside of herbivore guts harbor plant-degrading enzymes that are largely uncharacterized, and could have direct biotech potential," said O'Malley. "Further, it turns out that these consortia of microbes form partnerships that allow them to degrade plant material in the most optimal way, namely by distributing the chemical byproducts among all the different members to improve breakdown. By learning about these unusual microbes, especially how they partner together, we seek to develop new culture technologies to advance lignocellulosic bioprocessing into value-added chemicals."

The CAREER award, said O'Malley, will allow her and her research group to decipher how nature pairs microbes together, enabling them to build partnerships between microbes that wouldn't normally see each other in nature. "This would open the way for new bioprocessing technologies where multiple microbes become specialists that 'divide and conquer' difficult tasks," she said.
Forthcoming applications of this research include engineering anaerobic digestors, production of fuels and commodity chemicals from waste materials and discovery of new natural products. The project also includes a collaboration with the Santa Barbara Zoo, and a science program for economically disadvantaged students in the community.

The NSF's Faculty Early Career Development (CAREER) Program is a foundation-wide activity that offers the National Science Foundation's most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations. Such activities should build a firm foundation for a lifetime of leadership in integrating education and research.

University of California - Santa Barbara

Related Microbes Articles:

Microbes seen controlling action of host's genes
Duke researchers have shown that microbes can control their animal hosts by manipulating the molecular machinery of their cells, triggering patterns of gene expression that consequently contribute to health and disease.
Three-way dance between herbivores, plants and microbes unveiled
What looks like a caterpillar chewing on a leaf or a beetle consuming fruit is likely a three-way battle that benefits most, if not all of the players involved, according to a Penn State entomologist.
Vitamin B12: Power broker to the microbes
In the microbial world, vitamin B12 is a hot commodity.
Gut microbes and bird's breath from the U at #SICB2017
University of Utah researchers will be among the scientists convening in New Orleans for the 2017 Annual Meeting for the Society for Integrative and Comparative Biology Jan.
Gut microbes contribute to recurrent 'yo-yo' obesity
New research in mice may in the future help dieters keep the weight off.
Digital microbes for munching yourself healthy
A research team at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg has taken an important step in modelling the complexity of the human gut's bacterial communities -- the microbiome -- on the computer.
How gut microbes help chemotherapy drugs
Two bacterial species that inhabit the human gut activate immune cells to boost the effectiveness of a commonly prescribed anticancer drug, researchers report Oct.
Soil microbes flourish with reduced tillage
Microbes improve soil quality by cycling nutrients and breaking plant residues down into soil organic matter.
Microbes help plants survive in severe drought
Plants can better tolerate drought and other stressors with the help of natural microbes, University of Washington research has found.
Mix and match microbes to make probiotics last
Scientists have tried to alter the human gut microbiota to improve health by introducing beneficial probiotic bacteria.

Related Microbes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...