Tumor-suppressing gene restrains mobile elements that can lead to genomic instability

January 22, 2016

DALLAS - Jan. 22, 2016 - The most commonly mutated gene in cancer, p53, works to prevent tumor formation by keeping mobile elements in check that otherwise lead to genomic instability, UT Southwestern Medical Center researchers have found.

The p53 gene long has been known to suppress tumor formation, but the mechanisms behind this function - and why disabling the gene allows tumors to form - were not fully understood.

Findings from the study, published recently in Genes & Development, answer some of these questions and could one day lead to new ways of diagnosing and treating cancer, said the study's senior author, Dr. John Abrams, Professor of Cell Biology at UT Southwestern.

The investigators found that normal p53 gene action restrains transposons, mobile genetic elements called retroelements that can make copies of themselves and move to different positions on chromosomes. But, they discovered, when p53 is disabled by mutation, dramatic eruptions of these mobile elements occur. The study revealed that in mice with cancer and in human samples of two types of cancer (Wilms' tumors and colon tumors) disabled for p53, transposons became very active.

In a healthy state, certain mechanisms work to keep these retroelements quiet and inactive, explained Dr. Abrams. One of those mechanisms is p53 action. Conversely, when p53 is mutated, retroelements can erupt.

"If you take the gene away, transposons can wreak havoc throughout the genome by causing it to become highly dysregulated, which can lead to disease," Dr. Abrams said. "Our findings help explain why cancer genomes are so much more fluid and destabilized than normal genomes. They also provide a novel framework for understanding how normal cells become tumors."

Although much more research is needed, Dr. Abrams said, the potential clinical implications of the team's findings are significant.

"Understanding how p53 prevents tumors raises the prospect of therapeutic interventions to correct cases in which p53 is disabled," Dr. Abrams said. "If retroelements are at the heart of certain p53-driven cancers, finding ways to suppress them could potentially allow us to prevent those cancers or intervene to keep them from progressing."

This understanding also could lead to advances in diagnosing some cancers through biomarkers related to p53 and transposon activity.

"One possibility is that perhaps blood or urine tests could detect dysregulated retroelements that could be indicative of certain types of cancer," Dr. Abrams said.
-end-
Other UT Southwestern researchers involved in this study were Dr. Annika Wylie, former graduate student; Paula Kurtz, graduate student; Dr. Amanda Jones and Dr. Alejandro D'Brot, postdoctoral researchers in Cell Biology; Dr. Kenneth Chen, Assistant Instructor in Pediatrics; Dr. Sarah Comerford, Assistant Professor of Molecular Genetics and in the Green Center for Systems Biology; Dr. Robert Hammer, Professor of Biochemistry and in the Green Center for Systems Biology; Dr. Dinesh Rakheja, Associate Professor of Pathology and Pediatrics; and Dr. James Amatruda, Associate Professor of Pediatrics, Internal Medicine, and Molecular Biology.

Dr. Hammer holds the Graydon Heartsill Professorship in Medical Science; Dr. Rakheja holds the John Lawrence and Patsy Louise Goforth Distinguished Professorship in Pathology; and Dr. Amatruda holds the Nearburg Family Professorship in Pediatric Oncology, and is a Horchow Family Scholar in Pediatrics.

Also contributing were researchers from Stanford University Medical Center and the University of Michigan Medical School.

The study was supported by the National Cancer Institute, National Institutes of Health, Welch Foundation, Ellison Medical Foundation, Children's Medical Center Foundation, Society for Pediatric Pathology, Cancer Prevention and Research Institute of Texas, and the Damon Runyon Cancer Research Foundation.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has included six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 92,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

UT Southwestern Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.