Nav: Home

New fuel cell technology runs on solid carbon

January 22, 2018

IDAHO FALLS -- Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory researchers.

The fuel cell design incorporates innovations in three components: the anode, the electrolyte and the fuel. Together, these advancements allow the fuel cell to utilize about three times as much carbon as earlier direct carbon fuel cell (DCFC) designs.

The fuel cells also operate at lower temperatures and showed higher maximum power densities than earlier DCFCs, according to INL materials engineer Dong Ding. The results appear in this week's edition of the journal Advanced Materials.

Whereas hydrogen fuel cells (e.g., proton exchange membrane (PEM) and other fuel cells) generate electricity from the chemical reaction between pure hydrogen and oxygen, DCFCs can use any number of carbon-based resources for fuel, including coal, coke, tar, biomass and organic waste.

Because DCFCs make use of readily available fuels, they are potentially more efficient than conventional hydrogen fuel cells. "You can skip the energy-intensive step of producing hydrogen," Ding said.

But earlier DCFC designs have several drawbacks: They require high temperatures -- 700 to 900 degrees Celsius -- which makes them less efficient and less durable. Further, as a consequence of those high temperatures, they're typically constructed of expensive materials that can handle the heat.

Also, early DCFC designs aren't able to effectively utilize the carbon fuel.

Ding and his colleagues addressed these challenges by designing a true direct carbon fuel cell that's capable of operating at lower temperatures -- below 600 degrees Celsius. The fuel cell makes use of solid carbon, which is finely ground and injected via an airstream into the cell. The researchers tackled the need for high temperatures by developing an electrolyte using highly conductive materials -- doped cerium oxide and carbonate. These materials maintain their performance under lower temperatures.

Next, they increased carbon utilization by developing a 3-D ceramic textile anode design that interlaces bundles of fibers together like a piece of cloth. The fibers themselves are hollow and porous. All of these features combine to maximize the amount of surface area that's available for a chemical reaction with the carbon fuel.

Finally, the researchers developed a composite fuel made from solid carbon and carbonate. "At the operating temperature, that composite is fluidlike," Ding said. "It can easily flow into the interface."

The molten carbonate carries the solid carbon into the hollow fibers and the pinholes of the anode, increasing the power density of the fuel cell.

The resulting fuel cell looks like a green, ceramic watch battery that's about as thick as a piece of construction paper. A larger square is 10 centimeters on each side. The fuel cells can be stacked on top of one another depending on the application. The Advanced Materials journal posted a video abstract here: https://youtu.be/M_wOsvze2qI.

The technology has the potential for improved utilization of carbon fuels, such as coal and biomass, because direct carbon fuel cells produce carbon dioxide without the mixture of other gases and particulates found in smoke from coal-fired power plants, for example. This makes it easier to implement carbon capture technologies, Ding said.

The advanced DCFC design has already attracted notice from industry. Ding and his colleagues are partnering with Salt Lake City-based Storagenergy, Inc., to apply for a Department of Energy Small Business Innovation Research (SBIR)-Small Business Technology Transfer (STTR) Funding Opportunity. The results will be announced in February 2018. A Canadian energy-related company has also shown interest in these DCFC technologies.
-end-
Idaho National Laboratory is one of the U.S. Department of Energy's national laboratories. The laboratory performs work in each of DOE's strategic goal areas: energy, national security, science and environment. INL is the nation's leading center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance.

See more INL news at http://www.inl.gov. Follow @INL on Twitter or visit our Facebook page at http://www.facebook.com/IdahoNationalLaboratory.

DOE/Idaho National Laboratory

Related Biomass Articles:

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.
A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.
Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.
Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.
Biotech breakthrough turns waste biomass into high value chemicals
A move towards a more sustainable bio-based economy has been given a new boost by researchers who have been able to simplify a process to transform waste materials into high value chemicals.
How preprocessing methods affect the conversion efficiency of biomass energy production
Research on energy production from biomass usually focuses on the amount of energy generated.
Supercomputing improves biomass fuel conversion
Pretreating plant biomass with THF-water causes lignin globules on the cellulose surface to expand and break away from one another and the cellulose fibers.
Whole-tree harvesting could boost biomass production
Making the shift to renewable energy sources requires biomass, too.
Left out to dry: A more efficient way to harvest algae biomass
Researchers at the University of Tsukuba develop a new system for evaporating the water from algae biomass with reusable nanoporous graphene, which can lead to cheaper, more environmentally friendly biofuels and fine chemicals.
Symbiotic upcycling: Turning 'low value' compounds into biomass
Kentron, a bacterial symbiont of ciliates, turns cellular waste products into biomass.
More Biomass News and Biomass Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Graham
If former Minneapolis police officer Derek Chauvin's case for the death of George Floyd goes to trial, there will be this one, controversial legal principle looming over the proceedings: The reasonable officer. In this episode, we explore the origin of the reasonable officer standard, with the case that sent two Charlotte lawyers on a quest for true objectivity, and changed the face of policing in the US. This episode was produced by Matt Kielty with help from Kelly Prime and Annie McEwen. Support Radiolab today at Radiolab.org/donate.