Siberian scientists learned how to reduce harmful emissions from HPPs

January 22, 2018

A team of scientists from Siberian Federal University (SFU) and their colleagues from Novosibirsk and the Netherlands modeled the process of coal burning in HPP boilers and found out which type of fuel produced less harmful emissions. The study was published in Fuel journal.

Heat power plants (HPPs) supply electrical energy to many cities in the world. The production of heat and electricity starts with burning coal in a combustion chamber. Generated heat warms up the steam and smoke mixture that moves the turbine. This is how electricity is produced, and the warmth is used for heating. However, when coal is burned at HPPs, harmful nitrogen oxides are released into the atmosphere.

One of the most prospective emission-cutting technologies is post-combustion or three-stage fuel combustion. After the first combustion stage during which the main part of the coal burns out and the air is scarce, the remains of the fuel are transferred to a special area above the combustion chamber. Additional fuel is also transported here. Nitrogen oxides react with the hydrocarbon forming hydrogen cyanide and molecular nitrogen, and the volume of nitrogen oxide emissions drops by about 10%.

"The environmental impact of oil and gas post-combustion is more evident, but we also have to work with coal. It has a great practical importance as many HPPs use it," explained Alexander Dekterev, a co-author of the article, candidate of technical sciences, and head of the department of thermal physics at SFU.

Many scientists conducted experiments in order to understand which properties of coal and combustion techniques allow for maximum emissions reduction. Recently physicists have offered to mill coal down not to average powder (with particle size of about 200 micron, like in facial powder) but to micro-particles (20-30 micron). This technique provides for a more stable flare in HPPs, as coal micro-particles are mixed better and burned quicker.

Previously this effect was demonstrated in small experimental boilers. The flame from the burning of coal micro-particles resembled that of burning oil, and the particles were almost invisible. Still it wasn't clear whether the effect would be the same in regular HPP boilers, and the scientists from Krasnoyarsk decided to model that.

They took a standard steam boiler BKZ-500-140 of Krasnoyarsk HPP-2 as a model, as all experimental data on it was available. The data were downloaded into the model and after that is was reconfigured taking the post-combustion into account. In the new model the basic fuel was brown Kansk-Achinsk coal, and the post-combustion fuel was formed by jet coal from Kuznetsk. According to initial calculations, the mathematical model implemented by the authors of the article in the in-house software correctly described the processes in the boiler.

The team modeled three burning schemes - with regular coal, micro-particle coal, and mechanically activated fuel. The latter variant proved to be preferable and led to 50% reduction in Nox emissions compared to the basic variant and by 20% to the regular coal.

The work might be of interest for developers and engineers working on the improvement of the existing boiler equipment and design of power blocks. The authors continue to develop mathematical modeling methods to improve burning technologies both for widely used and unconventional fuel types.
-end-


Siberian Federal University

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.