Nav: Home

New metal-semiconductor interface for brain-inspired computing

January 22, 2018

One of the big challenges in computer architecture is integrating storage, memory and processing in one unit. This would make computers faster and more energy efficient. University of Groningen physicists have taken a big step towards this goal by combining a niobium doped strontium titanate (SrTiO3) semiconductor with ferromagnetic cobalt. At the interface, this creates a spin-memristor with storage abilities, paving the way for neuromorphic computing architectures. The results were published on 22 January in Scientific Reports.

The device developed by the physicists combines the memristor effect of semiconductors with a spin-based phenomenon called tunnelling anisotropic magnetoresistance (TAMR) and works at room temperature. The SrTiO3 semiconductor has a non-volatile variable resistance when interfaced with cobalt: an electric field can be used to change it from low to high resistance and back. This is known as the electroresistance effect.

Tunability

Furthermore, when a magnetic field was applied across the same interface, in and out of the plane of the cobalt, this showed a tunablity of the TAMR spin voltage by 1.2 mV. This coexistence of both a large change in the value of TAMR and electroresistance across the same device at room temperature has not previously been demonstrated in other material systems.

'This means we can store additional information in a non-volatile way in the memristor, thus creating a very simple and elegant integrated spin-memristor device that operates at room temperature', explains Professor of Spintronics of Functional Materials Tamalika Banerjee. She works at the Zernike Institute for Advanced Materials at the University of Groningen. So far, attempts to combine spin-based storage, memory and computing have been hampered by a complex architecture in addition to other factors.

Brain

The key to the success of the Banerjee group device is the interface between cobalt and the semiconductor. 'We have shown that a one-nanometre thick insulating layer of aluminium oxide makes the TAMR effect disappear', says Banerjee. It took quite some work to engineer the interface. They did so by adjusting the niobium doping of the semiconductor and thus the potential landscape at the interface. The same coexistence can't be realized with silicon as a semiconductor: 'You need the heavy atoms in SrTiO3 for the spin orbit coupling at the interface that is responsible for the large TAMR effect at room temperature.'

These devices could be used in a brain-like computer architecture. They would act like the synapses that connect the neurons. The synapse responds to an external stimulus, but this response also depends on the synapse's memory of previous stimuli. 'We are now considering how to create a bio-inspired computer architecture based on our discovery.' Such a system would move away from the classical Von Neumann architecture. The big advantage is that it is expected to use less energy and thus produce less heat. 'This will be useful for the "Internet of Things", where connecting different devices and networks generates unsustainable amounts of heat.'

Energy efficiency

The physics of what exactly happens at the interface of cobalt and the strontium semiconductor is complicated, and more work needs to be done to understand this. Banerjee: 'Once we understand it better, we will be able to improve the performance of the system. We are currently working on that. But it works well as it is, so we are also thinking of building a more complex system with such spin-memristors to test actual algorithms for specific cognition capabilities of the human brain.' Banerjee's device is relatively simple. Scaling it up to a full computing architecture is the next big step.

How to integrate these devices in a parallel computing architecture that mimics the working of the brain is a question that fascinates Banerjee. 'Our brain is a fantastic computer, in the sense that it can process vast amounts of information in parallel with an energy efficiency that is far superior to that of a supercomputer.' Banerjee's team's findings could lead to new architectures for brain-inspired computing.
-end-
Reference: Alexander M. Kamerbeek, Roald Ruiter and Tamalika Banerjee: Large room-temperature tunneling anisotropic magnetoresistance and electroresistance in single ferromagnet/Nb:SrTiO3 Schottky devices. Scientific Reports 22 January 2018

University of Groningen

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Unlimited Memory: How to Use Advanced Learning Strategies to Learn Faster, Remember More and be More Productive
by Kevin Horsley (Author)

Memory Rescue: Supercharge Your Brain, Reverse Memory Loss, and Remember What Matters Most
by Daniel G. Amen (Author)

The Memory Book: The Classic Guide to Improving Your Memory at Work, at School, and at Play
by Harry Lorayne (Author), Jerry Lucas (Author)

Memory Improvement: How To Improve Your Memory In Just 30 Days
by Ron White (Author)

The Great War and Modern Memory
by Paul Fussell (Author)

Photographic Memory: Remembering Anything Better and Faster with This Accelerated Learning Guide for Unlimited Memory Improvement
by Paul Thomson

TIME The Science of Memory
by Time

The Learning Delusion: Discover the Truth Behind Learning: Increase Your Memory, Learning Abilities, Focus and Direct Your Own Education
by Jodie Wade

Memory Improvement, Accelerated Learning and Brain Training: Learn How to Optimize and Improve Your Memory and Learning Capabilities for Top Results in University and at Work
by John Adams (Author)

Memory Man (Memory Man series)
by David Baldacci (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".