Nav: Home

Double trouble: Moisture, not just heat impacts sex of sea turtle hatchlings

January 22, 2018

Alarming results from a recent gender ratio study revealed that 99 percent of young green turtles from Australia's Northern Great Barrier Reef are female and that male sea turtles are disappearing. Closer to home, researchers from Florida Atlantic University have documented a similar trend in sea turtle hatchlings in southeast Florida. Since 2002, they have studied sea turtles in Palm Beach County and discovered that 97 to 100 percent of the hatchlings have been female.

Unlike humans, turtles and other reptiles like crocodiles who lay their eggs do not have sex chromosomes. In sea turtles, sex is determined by the nest's environment: warmer temperatures produce females and cooler temperatures produce males.

However, it is not just temperature that affects embryogenesis and the phenotype of the resulting hatchlings. Moisture changes the microclimate experienced by the eggs inside the nest and can significantly affect their development. Wetter substrates tend to produce more males and drier substrates tend to produce more females.

In a study published in Zoology, FAU researchers are the first to show why and how moisture conditions inside the nest affect the development and sex ratios of turtle embryos. They are the first to estimate sex ratios using a male-specific, transcriptional molecular marker Sox9, a marker of testis development in sea turtles and freshwater turtles.

The researchers found that the coolest and the wettest substrates produce 100 percent males compared to 42 percent males from the warmest and driest treatment. They also found that embryonic growth appears to be more sensitive to temperature at earlier stages of development and to moisture at later stages.

"During incubation, the turtle embryo grows inside the nest from a few cells to a fully formed and independent organism at hatching," said Jeanette Wyneken, Ph.D., author of the study and a professor of biological sciences in FAU's Charles E. Schmidt College of Science. "For proper development, embryos require an appropriate range of temperature, moisture, salinity, and respiratory gases."

Using their novel experimental design, Wyneken and study collaborators Sarah L. Milton, Ph.D., an associate professor of biological sciences at FAU, Itzel Sifuentes-Romero, Ph.D., a Fulbright postdoctoral fellow at FAU, and Boris M. Tezak, a Ph.D. candidate at FAU, found differences in developmental rates, egg mass and sex ratios. Results show that embryos developed slowly in cooler and wetter sand substrates while water uptake by the eggs was significantly greater on wetter substrates.

"We found that development differences were due to moisture interacting with temperature where increased water content of the sand resulted in temperatures that were 2 to 3 degrees Celsius lower than air temperatures," said Wyneken.

For the study, the researchers incubated eggs from the Trachemys scripta elegans, a semi-aquatic turtle, under different temperature and moisture regimes to study the effect of the two environmental factors on developmental rate, egg mass, embryo mass and length, and sex ratio. They monitored embryonic development until stage 22 when their sex is determined. Turtle embryonic development is divided into 27 stages. The pivotal temperature is the constant temperature (29 degrees Celsius or 84.2 degrees Fahrenheit) at which 50:50 sex ratio is expected. Sex ratio was based on expression levels of Sox9 and all data were tested for normality and for homogeneity before statistical analysis.

This laboratory study is consistent with field studies of freshwater turtles and sea turtles. Results of the study also are relevant when considering nesting phenology in the wild because conditions such as temperature and rainfall often vary depending across the nesting season.

"Our study demonstrates how moisture may change the incubation conditions inside nests by changing the temperature experienced by eggs, which affects development, growth and sex ratios," said Wyneken. "Furthermore, results of our study highlight the importance of including moisture conditions when predicting embryo growth and sex ratios and in developing proxies of embryonic development. Improving accuracy is particularly important when trying to assess the impact of climate change in species with temperature-dependent sex determination and other forms of environmental determination."
-end-
This research is supported by the National Save The Sea Turtle Foundation, donors to the Nelligan Sea Turtle Fund, and private funds.

About Florida Atlantic University:

Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University, with an annual economic impact of $6.3 billion, serves more than 30,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida. FAU's world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of critical areas that form the basis of its strategic plan: Healthy aging, biotech, coastal and marine issues, neuroscience, regenerative medicine, informatics, lifespan and the environment. These areas provide opportunities for faculty and students to build upon FAU's existing strengths in research and scholarship. For more information, visit http://www.fau.edu.

Florida Atlantic University

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
Historical climate important for soil responses to future climate change
Researchers at Lund University in Sweden, in collaboration with colleagues from the University of Amsterdam, examined how 18 years of drought affect the billions of vital bacteria that are hidden in the soil beneath our feet.
Can forests save us from climate change?
Additional climate benefits through sustainable forest management will be modest and local rather than global.
From crystals to climate: 'Gold standard' timeline links flood basalts to climate change
Princeton geologists used tiny zircon crystals found in volcanic ash to rewrite the timeline for the eruptions of the Columbia River flood basalts, a series of massive lava flows that coincided with an ancient global warming period 16 million years ago.
Think pink for a better view of climate change
A new study says pink noise may be the key to separating out natural climate variability from climate change that is influenced by human activity.
Climate taxes on agriculture could lead to more food insecurity than climate change itself
New IIASA-led research has found that a single climate mitigation scheme applied to all sectors, such as a global carbon tax, could have a serious impact on agriculture and result in far more widespread hunger and food insecurity than the direct impacts of climate change.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.