Nav: Home

TU Wien develops new semiconductor processing technology

January 22, 2018

Extremely fine porous structures with tiny holes - resembling a kind of sponge at nano level - can be generated in semiconductors. This opens up new possibilities for the realization of tiny sensors or unusual optical and electronic components. There have already been experiments in this area with porous structures made from silicon. Now, researchers at TU Wien have succeeded in developing a method for the controlled manufacture of porous silicon carbide. Silicon carbide has significant advantages over silicon; it has greater chemical resistance and can therefore be used for biological applications, for example, without any additional coating required.

To demonstrate the potential of this new technology, a special mirror that selectively reflects different colours of light has been integrated into a SiC wafer by creating thin layers with a thickness of approximately 70 nm each and with different degrees of porosity.

Control using light refraction

"There is a whole range of exciting technical possibilities available to us when making a porous structure with countless nano holes from a solid piece of a semiconductor material," says Markus Leitgeb from the Institute of Sensor and Actuator Systems at TU Wien. Leitgeb developed the new material processing technology as part of his dissertation with Professor Ulrich Schmid in cooperation with CTR Carinthian Tech Research AG and sponsored by the Competence Centers for Excellent Technologies (COMET) programme. "The porous structure influences the manner in which light waves are affected by the material. If we can control the porosity, this means we also have control over the optical refractive index of the material."

This can be very useful in sensor technology - for example, the refractive index of tiny quantities of liquid can be measured using a porous semiconductor sensor, thus allowing a reliable distinction between different liquids.

Another attractive option from a technical and application-oriented perspective is to first make certain areas of the SiC wafer porous in a highly localized manner, before depositing a new SiC layer over these porous areas, and then causing the latter to collapse in a controlled manner - this technique produces microstructures and nanostructures which can also play a key role in sensor technology.

However, in all these techniques it is crucial that the appropriate starting material is selected. "Until now, silicon has been used for this purpose, a material with which we already have a lot of experience", says Professor Schmid. Silicon also has significant drawbacks, however; under harsh environmental conditions, for example in extreme heat or in alkaline solutions, structures made of silicon are attacked and rapidly destroyed. Therefore, sensors made of silicon are often not suitable for biological or electrochemical applications.

For this reason, at TU Wien, attempts have been made to achieve something similar with the semiconductor silicon carbide, which is biocompatible and considerably more robust from a chemical perspective. Some special tricks were required, however, in order to produce porous structures from silicon carbide.

The colour-selective mirror

First, the surface is cleaned, and then partially covered with a thin layer of platinum. The silicon carbide is then immersed in an etching solution and exposed to UV light, in order to initiate the oxidation processes. This causes a thin porous layer - initially 1 μm thick - to form in these areas that are not coated with platinum. An electrical charge is then also applied in order to be able to precisely set the porosity and the thickness of the subsequent layers. Here, the first porous layer promotes the formation of the first pores when the electrical charge is applied.

"The porous structure spreads from the surface further and further into the interior of the material", explains Markus Leitgeb. "By adjusting the electrical charge during this process, we can control what porosity we want to have at a given depth." In this way, it was possible to produce a complex layered structure of silicon carbide layers with higher and lower levels of porosity, which is finally separated from the bulk material by applying a high voltage pulse. The thickness of the individual layers can be selected such that the layered structure reflects certain light wavelengths particularly well or allows certain light wavelengths to pass through, resulting in an integrated, colour-selective mirror.

"We have thus demonstrated that our new method can be used to reliably control the porosity of silicon carbide on a microscopic scale", says Ulrich Schmid. "This technology promises many potential applications, from anti-reflective coatings, optical or electronic components and special biosensors, through to resistant supercapacitors."
-end-
Contact:


Prof. Ulrich Schmid
TU Wien
Gußhausstraße 27-29, 1040 Vienna
T: 43-1-58801-36689
ulrich.e366.schmid@tuwien.ac.at

Vienna University of Technology

Related Silicon Articles:

To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
It would be difficult to overestimate the importance of silicon when it comes to computing, solar energy, and other technological applications.
Polymer-coated silicon nanosheets -- an alternative to graphene
Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene.
Bringing silicon to life
Living organisms have been persuaded to make chemical bonds not found in nature, a finding that may change how medicines and other chemicals are made in the future.
Bringing carbon-silicon bonds to life
Following a few tweaks, heme proteins can efficiently catalyze the formation of carbon-silicon bonds, which are not found in any known biological molecules, nor capable of being created through any existing biological processes.
What a twist: Silicon nanoantennas turn light around
Scientists at MIPT and their colleagues from ITMO University and the University of Texas at Austin have developed a nonlinear nanoantenna that can be used to scatter light in a desired direction by varying its intensity.
Obtaining of silicon nanowires becomes eco-friendly
Scientists from the Faculty of Physics, the Lomonosov Moscow State University have devised a technique of silicon nanowires synthesis.
Recharging on stable, amorphous silicon
Next-generation anodes for lithium ion batteries will probably no longer be made of graphite.
More stable qubits in perfectly normal silicon
The power of future quantum computers stems from the use of qubits, or quantum bits.
Silicon nanoparticles trained to juggle light
Silicon nanoparticles based devices would allow to transmit, reflect, or scatter incident light in a specified direction, depending on its intensity.
New silicon structures could make better biointerfaces
A team of researchers have engineered silicon particles one-fiftieth the width of a human hair, which could lead to 'biointerface' systems designed to make nerve cells fire and heart cells beat.

Related Silicon Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".