Nav: Home

Saarland University bioinformaticians compute gene sequences inherited from each parent

January 22, 2018

One of the most important tools for solving this complex puzzle is special software developed by scientists at the Center for Bioinformatics at Saarland University. The renowned journal Nature Communications has reported twice on their research.

Humans have 46 chromosomes. These carry the genes and define the genetic material, the so-called genome. So that the number of chromosomes does not double with each generation, only 23 chromosomes are included in male and female germ cells, which merge in a fertilized egg cell to form a new life. Such a half-set of chromosomes is designated as "haploid." "Which gene variants I receive from my father or mother can decide whether I get sick, and also how I can best be medically treated," explains Tobias Marschall, Professor of Bioinformatics at Saarland University. There he leads the group "Algorithms for Computational Genomics" at the Center for Bioinformatics.

Being able to analyze which gene variants were inherited from which parent, and thereby determine the so-called haplotype, is the new quantum leap for the sequencing of the human genome. Two developments are crucial for this: First, the so-called third-generation sequencing techniques, established by firms like Oxford Nanopore, 10x Genomics and Pacific Biosciences, deliver a different type of gene data. "Through them, we now get much longer gene snippets and can now finally put into practice what we have long studied in theory," says Marschall. He is actively involved in the second requirement: He develops the computational methods that make the mountains of genetic data manageable. Part of this has made its way into the software, named "WhatsHap," that Marschall developed with his colleagues.

"Imagine an extremely difficult puzzle. With WhatsHap we solve two of them at the same time," Marschall describes WhatsHap's approach. The bioinformatician is convinced that with the help of such programs, in the foreseeable future the determination of one's haplotype will become a routine examination in hospitals, just as identification of the blood group is today. He considers the two articles in the journal "Nature Communications" the first milestone for this.
-end-
The German Research Foundation (DFG) also confirmed the relevance of this work by announcing, last week, the financial support of two projects related to WhatsHap. In the first project, Professor Marschall will work together with Professor Gunnar Klau from the Heinrich Heine University of Duesseldorf on even more powerful computational methods for haplotyping. In the second project, the DFG is supporting the long-term maintenance of the WhatsHap software as part of the "Sustainability of Research Software" initiative, paving the way for its use in everyday clinical practice. A total of 800,000 euro is available for these projects, of which 550,000 will go to Saarland University to create new positions for researchers and developers.

Background: Saarland Informatics Campus (SIC)

The core of the Saarland Informatics Campus is the Department of Computer Science at Saarland University. In the immediate vicinity, seven other world-renowned research institutes conduct research on the campus. Along with the two Max Planck Institutes for Informatics and for Software Systems, these are the German Research Center for Artificial Intelligence (DFKI), the Center for Bioinformatics, the Intel Visual Computing Institute, the CISPA Helmholtz Center i.G. and the Cluster of Excellence "Multimodal Computing and Interaction" (MMCI).

Further information:

http://dx.doi.org/10.1038/s41467-017-01389-4

http://dx.doi.org/10.1038/s41467-017-01343-4

Press photos: http://www.uni-saarland.de/pressefotos

Questions can be directed to:


Jun.-Prof. Dr. Tobias Marschall
Center for Bioinformatics
Saarland Informatics Campus (SIC)
Tel.: 49-681-302-70880
E-mail: marschall@cs.uni-saarland.de

Editor:

Gordon Bolduan
Competence Center Computer Science Saarland
Saarland Informatics Campus (SIC)
Tel.: 49-681-302-70-741
E-mail: bolduan@mmci.uni-saarland.de

Saarland University

Related Chromosomes Articles:

Andalusian experts indicate new elements responsible for instability in chromosomes
The researchers state that RNA joins with DNA by chance or because of a disease, the structure of the chromatin, the protein envelope of the chromosomes is altered, causing breaks in the DNA.
Reconstruction of ancient chromosomes offers insight into mammalian evolution
Researchers have gone back in time, at least virtually, computationally recreating the chromosomes of the first eutherian mammal, the long-extinct, shrewlike ancestor of all placental mammals.
Newly discovered DNA sequences can protect chromosomes in rotifers
Rotifers are tough, microscopic organisms highly resistant to radiation and repeated cycles of dehydration and rehydration.
For keeping X chromosomes active, chromosome 19 marks the spot
After nearly 40 years of searching, Johns Hopkins researchers report they have identified a part of the human genome that appears to block an RNA responsible for keeping only a single X chromosome active when new female embryos are formed, effectively allowing for the generally lethal activation of more than one X chromosome during development.
Researchers assemble five new synthetic chromosomes
A global research team has built five new synthetic yeast chromosomes, meaning that 30 percent of a key organism's genetic material has now been swapped out for engineered replacements.
Jumbled chromosomes may dampen the immune response to tumors
How well a tumor responds to immunotherapy may depend in part on whether its chromosomes are intact or in a state of disarray, a new study reports.
Aging and cancer: An enzyme protects chromosomes from oxidative damage
EPFL scientists have identified a protein that caps chromosomes during cell division and protect them from oxidative damage and shortening, which are associated with aging and cancer.
Protective barrier inside chromosomes helps to keep cells healthy
Fresh insights into the structures that contain our genetic material could explain how the body's cells stay healthy.
How human eggs end up with the wrong number of chromosomes
One day before ovulation, human oocytes begin to divide into what will become mature eggs.
Genes versus chromosomes: A battle for expression in fly testes
Unique sex chromosomes occur in many species. An unequal pair of sex chromosomes, each carrying a different complement of genes, requires specific efforts to regulate and balance the expression of sex-chromosomal genes.

Related Chromosomes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".